Abstract:
A system and method for controlling the regeneration of an exhaust gas particulate filter. When regeneration is initiated, an outlet temperature of an exhaust gas oxidation catalyst and an outlet temperature of the exhaust gas particulate filter are detected. As part of a closed loop non-linear temperature targeting regime, the maximum of the outlet temperature of the exhaust gas oxidation catalyst and the outlet temperature of the exhaust gas particulate filter is set as a reference temperature. A regeneration temperature target is initialized and indexed based on a profile time and the reference temperature. As part of a closed loop fuel control regime at least one hydrocarbon dosing value is determined based on an exhaust mass flow, the reference temperature, and the regeneration temperature target.
Abstract:
A system and method for controlling the regeneration of an exhaust gas particulate filter. When regeneration is initiated, an outlet temperature of an exhaust gas oxidation catalyst and an outlet temperature of the exhaust gas particulate filter are detected. As part of a closed loop non-linear temperature targeting regime, the maximum of the outlet temperature of the exhaust gas oxidation catalyst and the outlet temperature of the exhaust gas particulate filter is set as a reference temperature. A regeneration temperature target is initialized and indexed based on a profile time and the reference temperature. As part of a closed loop fuel control regime at least one hydrocarbon dosing value is determined based on an exhaust mass flow, the reference temperature, and the regeneration temperature target.
Abstract:
An aftertreatment system for treating exhaust gas discharged from a combustion engine may include a particulate filter, a reductant-injection system, an ammonia sensor and a control module. The particulate filter may be configured to filter exhaust gas discharged from the combustion engine. The reductant-injection system may be configured to inject a reductant into a stream of the exhaust gas upstream of the particulate filter. The ammonia sensor may be configured to sense a concentration of ammonia in the stream of exhaust gas downstream of the particulate filter. The control module may be in communication with the ammonia sensor and may determine a soot load of the particulate filter based on data received from the ammonia sensor.
Abstract:
An aftertreatment system for treating exhaust gas discharged from a combustion engine may include a particulate filter, a reductant-injection system, an ammonia sensor and a control module. The particulate filter may be configured to filter exhaust gas discharged from the combustion engine. The reductant-injection system may be configured to inject a reductant into a stream of the exhaust gas upstream of the particulate filter. The ammonia sensor may be configured to sense a concentration of ammonia in the stream of exhaust gas downstream of the particulate filter. The control module may be in communication with the ammonia sensor and may determine a soot load of the particulate filter based on data received from the ammonia sensor.
Abstract:
An exhaust after-treatment system including an exhaust passage having at least a first portion and a second portion. An exhaust treatment component may be positioned within the exhaust passage between the first and second portions, and an insulating blanket insulates each of the first portion, second portion, and the exhaust treatment component. Temperature sensors may be positioned at the first portion, the second portion, the exhaust treatment component, wherein each sensor monitors the temperature at its location. A controller may have access to temperature data associated with an insulated exhaust after-treatment system, and the controller compares the monitored temperatures to the temperature data to determine whether a difference exceeding a predetermined threshold exists. If the difference exceeds a predetermined threshold, the controller outputs an error signal identifying particular portions of the exhaust system that are no longer insulated.
Abstract:
An exhaust after-treatment system including an exhaust passage having at least a first portion and a second portion. An exhaust treatment component may be positioned within the exhaust passage between the first and second portions, and an insulating blanket insulates each of the first portion, second portion, and the exhaust treatment component. Temperature sensors may be positioned at the first portion, the second portion, the exhaust treatment component, wherein each sensor monitors the temperature at its location. A controller may have access to temperature data associated with an insulated exhaust after-treatment system, and the controller compares the monitored temperatures to the temperature data to determine whether a difference exceeding a predetermined threshold exists. If the difference exceeds a predetermined threshold, the controller outputs an error signal identifying particular portions of the exhaust system that are no longer insulated.
Abstract:
An engine exhaust treatment and fuel efficiency improvement system includes a NOx module that determines a quantity of NOx emitted from an engine. A selective catalytic reduction (SCR) efficiency module determines a SCR efficiency to reduce the determined NOx quantity below a predetermined threshold. A reagent dosing module determines a quantity of reagent required to reduce the NOx quantity below the predetermined threshold. An injection optimization module determines whether an increase in system operating efficiency may be obtained by changing an injected reagent quantity and an engine operating parameter in cooperation with each other while maintaining the NOx quantity below the threshold, the system being operable to change the reagent injection quantity and engine operating parameter to increase system efficiency.