Abstract:
Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
Abstract:
A common-source Low Noise Amplifier (LNA) comprises a first spiral inductor coupled to a source of a first transistor, a second spiral inductor coupled to a drain of a second transistor, and a third inductor connecting the first transistor to the second transistor. The third inductor is configurable to enable a first capacitance to be coupled in parallel to form a bandpass filter. The first spiral inductor is configurable to enable a second capacitance to be coupled in parallel to form a resonant circuit. A variation of the LNA further includes a drain of a third transistor coupled to a gate of a fourth transistor with a first width, a source of the third transistor coupled to the resonant circuit, and an oscillator clock configured to operate at a first frequency that enables the third transistor, wherein the third transistor presents a first impedance to the resonant circuit, causing the resonant circuit to have a first bandwidth.
Abstract:
A cascode amplifier circuit comprises a first spiral inductor coupled to a source of a first transistor; a second spiral inductor coupled to a drain of a second transistor; a third inductor connecting the first transistor to the second transistor; a first capacitor coupled in parallel to the third inductor forming a bandpass filter; and a second capacitor coupled in parallel to the second spiral inductor forming a resonant circuit, wherein the resonant circuit oscillates at a center frequency.
Abstract:
In an up-converter path of a transmitter, wide-band signal system like direct conversion WiGig, a high pass filter (HPF) is placed in the baseband path after the low pass filter (LPF) but before the mixers. The baseband signal of WiGig can have a bandwidth of 800 MHz. The HPF removes the frequencies from 0-40 MHz from the baseband signal and degrades the overall signal of the baseband by a dB or so. However, the frequency pulling is significantly reduced since oscillator frequency and Radio frequency (RF) transmitter frequencies after conversion become further separated when compared a system using to the conventional approach. This causes the injected signal to fall outside the locking range of the oscillator. The concern of substrate coupling is reduced and allows for a reduction in the physical distance between the oscillator and the mixer and reduces a shift in the desired target frequency of operation.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
Abstract:
In an up-converter path of a transmitter, wide-band signal system like direct. conversion WiGig, a high pass filter (HPF) is placed in the baseband path after the low pass filter (LPF) but before the mixers. The baseband signal of WiGig can have a bandwidth of 800 MHz. The HPF removes the frequencies from 0-40 MHz from the baseband signal and degrades the overall signal of the baseband by a dB or so. However, the frequency pulling is significantly reduced since oscillator frequency and Radio frequency (RF) transmitter frequencies after conversion become further separated when compared a system using to the conventional approach. This causes the injected signal to fall outside the locking range of the oscillator. The concern of substrate coupling is reduced and allows for a reduction in the physical distance between the oscillator and the mixer and reduces a shift in the desired target frequency of operation.
Abstract:
A cross coupled NMOS transistors providing a negative gm transistor feedback allows a mixer to saturate at a reduced input signal swing voltage when compared to a conventional mixer allowing the mixer to enter into the current mode operation at a reduced signal input voltage range. The linearity of the baseband signal path can be traded against the mixer gain and is improved if the signal swing in the baseband signal path is reduced. The input mixer transistors operate in the saturated mode at a reduced input signal swing voltage causing the power efficiency of the system to increase since the transmit chain operates at a class-D power efficient. Efficiency is very important in mobile applications to save and extend the battery power of a mobile phone providing a better utilization of the available power since most of that power is supplied to the energy of the outgoing modulated signal.
Abstract:
Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.