Abstract:
An electrical connector includes a housing holding power terminals and having a mating end with a flexible latch configured to engage a latch of a mating connector. The flexible latch includes a pull hook extending therefrom. A release collar is slidably coupled to the housing in an axial direction between a forward position and a rearward position. The release collar has an actuator ramp facing the pull hook. The actuator ramp engages the pull hook to actuate the flexible latch to release the flexible latch from the latch of the mating connector as the release collar is moved to the rearward position. The housing includes a locking finger engaging the release collar to lock the release collar in the forward position. The release collar is unlocked from the locking finger to move to the rearward position.
Abstract:
An electrical connector includes a housing and an electrical contact held by the housing. The electrical contact includes opposing spring beams configured to receive an electrical wire therebetween. The spring beams have conductor interfaces configured to engage in physical contact with the electrical wire such that the electrical wire is captured between the spring beams with a compliant pinch connection. A pivot block is held by the housing, includes a receptacle for receiving the electrical wire, and is pivotable between an open position and a closed position. The pivot block is configured to be pivoted from the open position to the closed position to move the electrical wire into engagement in physical contact between the conductor interfaces of the spring beams such that the electrical wire is captured between the spring beams with the compliant pinch connection and thereby electrically connected to the electrical contact.
Abstract:
A modular plug includes a plug housing, plug contacts held by the plug housing, and a stuffer cap coupled to the plug housing. The stuffer cap includes a cable channel configured to receive a cable therein. The stuffer cap includes an interior side that defines at least a portion of the cable channel. The modular plug includes a strain relief member held by the plug housing. The strain relief member includes a base and a spring beam extending from the base such that the spring beam is cantilevered from the base. The spring beam is configured to engage the cable and thereby pinch the cable between the interior side of the stuffer cap and the spring beam.
Abstract:
An electrical connector includes a housing and an electrical contact held by the housing. The electrical contact includes opposing spring beams configured to receive an electrical wire therebetween. The spring beams have conductor interfaces configured to engage in physical contact with the electrical wire such that the electrical wire is captured between the spring beams with a compliant pinch connection. A pivot block is held by the housing, includes a receptacle for receiving the electrical wire, and is pivotable between an open position and a closed position. The pivot block is configured to be pivoted from the open position to the closed position to move the electrical wire into engagement in physical contact between the conductor interfaces of the spring beams such that the electrical wire is captured between the spring beams with the compliant pinch connection and thereby electrically connected to the electrical contact.
Abstract:
A photocell receptacle includes a base configured to be fixedly mounted to a housing of a light fixture. The base has an opening providing access to the interior of the housing of the light fixture. The base has a base locking feature. The photocell receptacle includes a cap having a cap locking feature. The cap locking feature operably engaging the base locking feature to secure the cap to the base. The cap is variably positionable at different angular positions relative to the base. The cap has contact channels holding electrical contacts configured to be electrically connected to corresponding contacts of a photocell.
Abstract:
A modular plug includes a plug housing, plug contacts held by the plug housing, and a stuffer cap coupled to the plug housing. The stuffer cap includes a cable channel configured to receive a cable therein. The stuffer cap includes an interior side that defines at least a portion of the cable channel. The modular plug includes a strain relief member held by the plug housing. The strain relief member includes a base and a spring beam extending from the base such that the spring beam is cantilevered from the base. The spring beam is configured to engage the cable and thereby pinch the cable between the interior side of the stuffer cap and the spring beam.
Abstract:
A wall plate connector system includes a wall plate terminal block extending from a wall plate base. The wall plate terminal block includes a terminal block body having a front, a rear, a first end and a second end. The terminal block body has contact channels and wire channels open to corresponding contact channels to receive electrical wires during a poke-in termination. Terminal contacts are received in corresponding contact channels and each include a poke-in spring beam and a header beam. A header assembly is removably coupled to the wall plate terminal block and includes header contacts configured to be terminated to a control circuit board. Each header contact has a mating beam. At least one of the mating beam and the header beam is a resiliently deflected spring beam configured for repeated mating and unmating at separable mating interfaces.
Abstract:
An electrical connector includes a housing having a receptacle that is configured to receive an electrical wire therein. An electrical contact is held by the housing. The electrical contact includes a contact beam that includes a wire interface that is configured to engage the electrical wire. The contact beam is movable between a closed position and an open position. The wire interface is configured to engage the electrical wire when the contact beam is in the closed position. The wire interface is configured to be disengaged from the electrical wire when the contact beam is in the open position. The electrical connector includes a push-button actuator having a resiliently deflectable spring that is configured to slidably engage the contact beam to thereby move the contact beam from the closed position to the open position.
Abstract:
A wall plate connector system includes a wall plate terminal block extending from a wall plate base. The wall plate terminal block includes a terminal block body having a front, a rear, a first end and a second end. The terminal block body has contact channels and wire channels open to corresponding contact channels to receive electrical wires during a poke-in termination. Terminal contacts are received in corresponding contact channels and each include a poke-in spring beam and a header beam. A header assembly is removably coupled to the wall plate terminal block and includes header contacts configured to be terminated to a control circuit board. Each header contact has a mating beam. At least one of the mating beam and the header beam is a resiliently deflected spring beam configured for repeated mating and unmating at separable mating interfaces.
Abstract:
A photocell receptacle includes a base configured to be fixedly mounted to a housing of a light fixture. The base has an opening providing access to the interior of the housing of the light fixture. The base has a base locking feature. The photocell receptacle includes a cap having a cap locking feature. The cap locking feature operably engaging the base locking feature to secure the cap to the base. The cap is variably positionable at different angular positions relative to the base. The cap has contact channels holding electrical contacts configured to be electrically connected to corresponding contacts of a photocell.