Abstract:
Sensor package is provided that includes a package housing defining a receiving cavity and having a package side. The package side includes a detector opening therethrough. The sensor package also includes a sensor module held by the package housing and disposed within the receiving cavity. The sensor module has a sensor side that is aligned with the detector opening such that the sensor side is exposed to a detection space. The sensor module also includes a conductive pathway that is configured to transmit signals that are based on an environmental parameter detected by the sensor module. The sensor package also includes an electrical contact that is coupled to the package housing. The electrical contact includes a contact finger. The contact finger is engaged to the conductive pathway and exerts a normal force against the conductive pathway.
Abstract:
A solar junction box includes a housing having a base and walls defining a cavity. The base has an opening configured to receive a conductive foil. A power cable is held in the housing having a power terminal terminated to an end of the power cable positioned within the housing. An electronic module is removably received in the cavity. The electronic module has a circuit board including electronic components mounted to the circuit board, a foil contact configured to be removably coupled to the foil, and a power contact configured to be removably coupled to the power terminal. The circuit board has a power circuit electrically connecting the foil contact and the power contact.
Abstract:
An electrical connector includes a housing holding power terminals and having a mating end with a flexible latch configured to engage a latch of a mating connector. The flexible latch includes a pull hook extending therefrom. A release collar is slidably coupled to the housing in an axial direction between a forward position and a rearward position. The release collar has an actuator ramp facing the pull hook. The actuator ramp engages the pull hook to actuate the flexible latch to release the flexible latch from the latch of the mating connector as the release collar is moved to the rearward position. The housing includes a locking finger engaging the release collar to lock the release collar in the forward position. The release collar is unlocked from the locking finger to move to the rearward position.
Abstract:
A multiple cable disconnect includes a housing having a separable mating end and a wire terminating end configured to receive wires of power cables. The housing has a plurality of terminal chambers with terminals therein. The terminals each have a base, a mating contact extending from the base and a wire contact extending from the base. The mating contact has a mating pad defining a separable mating interface for the terminal for mating with a corresponding mating terminal of the mating connector. The wire contact has plural wire interfaces for mating with plural wires such that plural wires are configured to be terminated to and commoned with each terminal. Wire retention springs are received in the housing each having at least one spring arm defining a wire trap with the corresponding wire contact. The spring arms are releasable to release the wires from the housing.
Abstract:
A multiple cable disconnect includes a housing having a separable mating end and a wire terminating end configured to receive wires of power cables. The housing has a plurality of terminal chambers with terminals therein. The terminals each have a base, a mating contact extending from the base and a wire contact extending from the base. The mating contact has a mating pad defining a separable mating interface for the terminal for mating with a corresponding mating terminal of the mating connector. The wire contact has plural wire interfaces for mating with plural wires such that plural wires are configured to be terminated to and commoned with each terminal. Wire retention springs are received in the housing each having at least one spring arm defining a wire trap with the corresponding wire contact. The spring arms are releasable to release the wires from the housing.
Abstract:
A solar junction box for a solar panel having at least one photovoltaic cell and a foil electrically connected to the at least one cell includes a housing having a base and walls defining a cavity. The housing is configured to be mounted to the solar panel. The base has at least one foil opening. A protection device is received in the cavity. A terminal is received in the cavity. The terminal has a protection device contact terminated to the protection device and a foil contact being crimped to the foil to electrically connect the terminal to the foil.
Abstract:
An electrical connector includes a housing and electrical contacts held by the housing. The electrical contacts include contact beams having wire interfaces configured to engage in physical contact with corresponding electrical wires. The contact beams are movable between closed positions and open positions. The wire interface of each contact beam is configured to engage in physical contact with the corresponding electrical wire when the contact beam is in the closed position. The wire interface of each contact beam is configured to be disengaged from physical contact with the corresponding electrical wire when the contact beam is in the open position. A release member is movably held by the housing such that movement of the release member is configured to move a plurality of the contact beams from the closed positions to the open positions thereof and thereby release a plurality of the electrical wires from the corresponding electrical contacts.
Abstract:
A relay connector assembly configured to electrically connect a power supply and a load includes a housing having a bottom configured to be mounted to a circuit board, the housing having contact cavities. Power contacts are received in corresponding contact cavities and held by the housing. The power contacts have relay tab ends and terminating ends having interfaces configured to be terminated to high current power conductors of either the power supply or the load. A relay is coupled to the housing. The relay has coil contacts configured to be electrically connected to a coil circuit of the circuit board used to energize the relay. The relay has relay tabs being terminated to the relay tab ends of corresponding power contacts. The relay electrically connects corresponding power contacts when the relay is energized.
Abstract:
A metal clad circuit board includes a metal substrate. A dielectric layer is applied to the metal substrate. A conductive seed layer is printed on the dielectric layer. A conductive circuit layer is plated onto the conductive seed layer. Optionally, the conductive seed layer may be inkjet printed on the dielectric layer. Alternatively, the conductive seed layer may be pad printed on the dielectric layer. Optionally, the dielectric layer may be powder coated to the metal substrate. The dielectric layer may include polymers and fillers compression molded to the metal substrate. Optionally, the conductive circuit layer may be electroplated to the conductive seed layer. Optionally, a solder mask may be applied over the conductive circuit layer.
Abstract:
A solar junction box for a solar panel includes a contact assembly having a base configured to be mounted to a solar panel and a terminal held by the base. The base has at least one foil opening configured to receive a foil. The terminal has a protection device contact configured to be terminated to a protection device. The terminal has a foil contact configured to be terminated to the foil. The terminal has a terminating contact configured to be electrically connected to a terminating assembly. The solar junction box includes a cover covering the contact assembly. The cover has walls defining a cavity receiving the terminal of the contact assembly. The walls are configured to be mounted directly to the solar panel.