摘要:
In a semiconductor device of the type in which a bipolar element and MOS field-effect transistors are formed on one surface of a semiconductor substrate, this invention discloses a semiconductor device characterized in that first buried layers of a first conductivity type are formed within regions of the semiconductor substrate in which the bipolar element are formed, a second buried layer of the first conductivity and at least one MOS field-effect transistor type is formed within the semiconductor substrate facing at least the emitter of the bipolar element, and the depth from one surface of the semiconductor substrate to the second buried layer of the first conductivity type is less than the depth from that surface to the first buried layer of the first conductivity type.This invention can prevent any increase in the capacity of the MOS field-effect transistor, and can also improve the operating speed of the bipolar element.
摘要:
An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from a surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
摘要:
An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
摘要:
An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
摘要:
An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
摘要:
An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.