Abstract:
In order to provide high speed and low power consumption, a semiconductor integrated circuit is constructed to utilize both CMOS elements and bipolar transistors. The bipolar transistors are used in the output portions to take advantage of their speed of operation to allow rapid charging and discharging of output lines. In the meantime, the principal operating portions of the circuit use CMOS elements of low power consumption. This arrangement is particularly advantageous in memory circuits.
Abstract:
Disclosed is a semiconductor integrated circuit wherein a logic circuit for exchanging signals with RAMS, with the RAMS being disposed centrally on the semiconductor chip or substrate, is divided into a plurality of logic circuits in accordance with the kind of signals and the divided logic circuits are disposed around the RAM in such a manner as to minimize the distance of signal transmission paths with the RAM and in order to attain high speed access to RAMS.
Abstract:
Disclosed is a bipolar-CMOS LSI manufactured by a simplified process and realizing a higher density of integration as well as a higher operating speed, in which a base lead-out electrode of a bipolar transistor and respective gate electrodes of a p-channel MISFET and an n-channel MISFET of CMOS transistors are made of an identical conductor film, and the conductor film of the gate electrode of the p-channel MISFET is of p-type, while that of the gate electrode of the n-channel MISFET is of n-type.
Abstract:
A semiconductor integrated circuit device having a structure in which each of the following regions, that is, a first region for forming the base and emitter regions of each of the bipolar transistors, a second region for forming the collector lead-out region of the bipolar transistor, and a third region for forming each of the MISFETs, is projected from the main surface of a semiconductor substrate, whereby it is possible to effect isolation between the MISFETs and between these MISFETs and the bipolar transistors with the same isolation structure and in the same manufacturing step as those for the isolation between the bipolar transistors. In this device, furthermore, the base region of the bipolar transistor is electrically and self-alignedly connected to a base electrode which is formed over the main surface so as to surround the emitter region. The bipolar transistor is characterized as a self-alignment transistor and that the insulating side wall spacers corresponding to the gate and base (emitter) electrodes are formed by a same lever.
Abstract:
An I.sup.2 L device is disclosed wherein the P type injector region of a PNP transistor is formed so as to be buried in an N.sup.- type epitaxial layer below the P type collector region of the PNP transistor, whereby the carrier injection efficiency of the transistor is improved and a high switching speed is obtained. The I.sup.2 L device further includes an inversed NPN transistor wherein the abovementioned P type collector region of the PNP transistor works as a base region of the NPN transistor, an N type collector region is formed in the P type base region, and the abovementioned P type injector region extends between the N.sup.- type epitaxial layer and an N.sup.+ type substrate except below the N type collector region so that the effective emitter portion of the NPN transistor is limited to a specific area immediately below the N type collector region, thereby to reduce the power consumption.
Abstract:
In a gate array with a RAM, by-pass signal lines which interconnect a logic section and I/O unit circuit of the gate array are disposed so as to extend above the RAM. In order to minimize mutual interference, signal lines formed from a layer which is adjacent to the by-pass signal lines are disposed so as to intersect the latter at right angles. In addition, interconnection pitches in different layer which extend parallel with each other are set so that noises are canceled in differential sense circuits.
Abstract:
A bipolar SRAM which includes a forward bipolar transistor and a reverse bipolar transistor on an identical semiconductor substrate, is disclosed. Concretely, the base region of the reverse bipolar transistor is formed at a deeper position of the substrate than the base region of the forward bipolar transistor, thereby to heighten the cutoff frequency f.sub.T of the reverse bipolar transistor.
Abstract:
In a gate array with a RAM, by-pass signal lines which interconnect a logic section and I/O unit circuit of the gate array are disposed so as to extend above the RAM. In order to minimize mutual interference, signal lines formed from a layer which is adjacent to the by-pass signal lines are disposed so as to intersect the latter at right angles. In addition, interconnection pitches in different layers which extend parallel with each other are set so that noises are cancelled in differential sense circuits.
Abstract:
A semiconductor integrated circuit device is provided with polycrystalline silicon filling U-grooves etched in a semiconductor substrate to form isolation regions which prevent any short-circuiting between the polycrystalline silicon and electrodes or wiring formed on the semiconductor substrate. A silicon dioxide film is formed within the U-grooves, and a silicon nitride film and a silicon dioxide film are further formed thereon. The silicon nitride film has a high hardness which suppresses the development of crystal defects in the peripheral active regions due to the expansion of the surface of the polycrystalline silicon when it is oxidized. When the surface of the polycrystalline silicon is oxidized, the oxidation proceeds along the oxide film over the nitride film, so that the whole of the oxide film is formed thickly. Therefore, the silicon nitride film and the silicon dioxide film are provided with an increased margin against the etching used for forming contact holes.
Abstract:
In order to provide high speed and low power consumption, a semiconductor integrated circuit is constructed to utilize both CMOS elements and bipolar transistors. The bipolar transistors are used in the output portions to take advantage of their speed of operation to allow rapid charging and discharging of output lines. In the meantime, the principal operating portions of the circuit use CMOS elements of low power consumption. This arrangement is particularly advantageous in memory circuits.