摘要:
A direct current pulse voltage is applied on a treatment gas to generate a discharge plasma. The duty ratio of the direct current pulse voltage is controlled within the range of 0.0001% or more and 8.0% or less. The rise time of the direct current pulse voltage is controlled in the range of not lower than 0.1 V/nsec and not higher than 10000 V/nsec. Alternatively, a positive pulse and a negative pulse are applied from a single power source for performing the discharge plasma and the impurity implantation.
摘要:
A direct current pulse voltage is applied on a treatment gas to generate a discharge plasma. The duty ratio of the direct current pulse voltage is controlled within the range of 0.0001% or more and 8.0% or less. The rise time of the direct current pulse voltage is controlled in the range of not lower than 0.1 V/nsec and not higher than 10000 V/nsec. Alternatively, a positive pulse and a negative pulse are applied from a single power source for performing the discharge plasma and the impurity implantation.
摘要:
A pulse voltage is applied on a process gas to generate discharge plasma. The pulse voltage has a duty ratio controlled in a range of 0.001 percent or more and 8.0 percent or less. Preferably, the discharge plasma has an electron density of 1×1010 cm−3 or larger and an electron temperature of 1.5 eV or lower at a supplied power of 1.0 W/cm2 or more per a unit area of a discharge electrode.
摘要翻译:对工艺气体施加脉冲电压以产生放电等离子体。 脉冲电压的占空比控制在0.001%以上且8.0%以下的范围内。 优选地,放电等离子体的供电功率为1.0W / cm 2,电子密度为1×10 9 cm -3以上,电子温度为1.5eV以下, 每放电电极的单位面积的SUP> 2以上。
摘要:
A pulse voltage is applied on a process gas to generate discharge plasma. The pulse voltage has a duty ratio controlled in a range of 0.001 percent or more and 8.0 percent or less. Preferably, the discharge plasma has an electron density of 1×1010 cm−3 or larger and an electron temperature of 1.5 eV or lower at a supplied power of 1.0 W/cm2 or more per a unit area of a discharge electrode.
摘要翻译:对工艺气体施加脉冲电压以产生放电等离子体。 脉冲电压的占空比控制在0.001%以上且8.0%以下的范围内。 优选地,放电等离子体的放电电极的单位面积的1.0W / cm 2以上的供给功率的电子密度为1×10 10 cm -3以上,电子温度为1.5eV以下。
摘要:
A pulsed power supply includes a DC power source, and a transformer and a switch which are connected in series with each other across the DC power source. The pulsed power supply operates to produce a plurality of high-voltage pulses in a repetition of cycles in each of which an induced energy is stored in the transformer when the switch is turned on and a high-voltage pulse is generated across a secondary winding of the transformer when the switch is turned off. The current flowing through the primary winding of the transformer is controlled to keep its peak value constant. The pulsed power supply further includes a current detector for detecting the current flowing through the primary winding of the transformer, and a third circuit for turning off the switch when the current detected by the current detector reaches the peak value.
摘要:
A pulse power source comprises a first circuit, a second circuit, a transformer for coupling the first circuit and the second circuit, and a switching controller. The second circuit comprises a third semiconductor switch connected in series with a secondary winding of the transformer. The third semiconductor switch is connected in such a direction that a voltage generated in the second circuit is reverse-biased during a period in which the second semiconductor switch is turned on. A gate amplifier for forming a control signal from the switching controller into a pulse and outputting the pulse as a pulse signal is connected between a gate terminal and a cathode terminal of the third semiconductor switch.
摘要:
Provided is a method of manufacturing a DLC film formed body in which peeling-off of a DLC film is suppressed. In manufacturing a DLC film formed body having a film hardness of 10 GPa or more, prior to the formation of the DLC film, a surface of a base is pretreated with a discharge plasma and a silicon carbide film being an interlayer is formed on the surface of the base. The surface of the base is pretreated by supplying an inside of the chamber with a gas mixture obtained by mixing 1 part by volume or more and 10 parts by volume or less of argon gas into 100 parts by volume of helium gas while adjusting a pressure inside of the chamber in which the base is housed to 20 hPa or higher and an atmospheric pressure or lower, and generating a discharge plasma in the mixed.
摘要:
An amorphous carbon film forming apparatus includes a supporting electrode that is connected to ground and supports a substrate, a counter electrode that is disposed so as to face the supporting electrode and has a mixed-gas injection orifice, a chamber containing the supporting electrode and the counter electrode, and a DC pulse generator having a pulse source that applies a DC pulse voltage between the supporting electrode and the counter electrode. An amorphous carbon film is formed by supplying a mixed gas between the supporting electrode and the counter electrode such that the percentage of the acetylene gas relative to the carrier gas is 0.05% by volume or more and 10% by volume or less, and by generating plasma while a DC pulse voltage having a pulse width of 0.1 μsec or more and 5.0 μsec or less is applied to the counter electrode.
摘要:
A pulse power source comprises a first circuit, a second circuit, a transformer for coupling the first circuit and the second circuit, and a switching controller. The second circuit comprises a third semiconductor switch connected in series with a secondary winding of the transformer. The third semiconductor switch is connected in such a direction that a voltage generated in the second circuit is reverse-biased during a period in which the second semiconductor switch is turned on. A gate amplifier for forming a control signal from the switching controller into a pulse and outputting the pulse as a pulse signal is connected between a gate terminal and a cathode terminal of the third semiconductor switch.
摘要:
An amorphous carbon film forming apparatus includes a supporting electrode that is connected to ground and supports a substrate, a counter electrode that is disposed so as to face the supporting electrode and has a mixed-gas injection orifice, a chamber containing the supporting electrode and the counter electrode, and a DC pulse generator having a pulse source that applies a DC pulse voltage between the supporting electrode and the counter electrode. An amorphous carbon film is formed by supplying a mixed gas between the supporting electrode and the counter electrode such that the percentage of the acetylene gas relative to the carrier gas is 0.05% by volume or more and 10% by volume or less, and by generating plasma while a DC pulse voltage having a pulse width of 0.1 μsec or more and 5.0 μsec or less is applied to the counter electrode.