摘要:
In a plasma processing system, a method for optimizing etching of a substrate is disclosed. The method includes selecting a first plasma process recipe including a first process variable, wherein changing the first process variable by a first amount optimizes a first substrate etch characteristic and aggravates a second substrate etch characteristic. The method also includes selecting second plasma process recipe including a second process variable, wherein changing the second process variable by a second amount aggravates the first substrate etch characteristic and optimizes the second substrate etch characteristic. The method further includes positioning a substrate on a chuck in a plasma processing chamber; and striking a plasma within the plasma processing chamber. The method also includes alternating between the first plasma recipe and the second plasma recipe, wherein upon completion of the alternating, the first substrate etch characteristic and the second substrate etch characteristic are substantially optimized.
摘要:
A method for etching silicon layer of a substrate, which is deposited on a bottom electrode in a plasma processing chamber. The method includes performing a main etch step until at least 70 percent of silicon layer is etched. The method further includes an overetch step, which includes a first, second, and third process steps. The first process step employs a first process recipe, the second process step employs a second process recipe, and the third process step employs a third process recipe. The second process recipe employs a second bottom bias voltage level applied to the bottom electrode which is higher than the first bottom bias voltage level employs in the first process recipe and the third bottom bias voltage level employs in the third process recipe. The first, second, and third process steps are alternated a plurality of times until silicon layer is etched through.
摘要:
A method for etching a substrate having a silicon layer in a plasma processing chamber having a bottom electrode on which the substrate is disposed on during etching. The method includes performing a main etch step. The method also includes terminating main etch step when a predefined etch depth of at least 70 percent of thickness into silicon layer is achieved. The method further includes performing an overetch step. The overetch step including a first process step and a second process step. First process step is performed using a first bottom power level applied to bottom electrode. Second process step is performed using a second bottom power level applied to bottom electrode that is lower than first bottom power level. First process and second process steps are alternately performed a plurality of times. The method yet also includes terminating overetch step after silicon layer is etched through.
摘要:
A method for etching silicon layer of a substrate, which is deposited on a bottom electrode in a plasma processing chamber. The method includes performing a main etch step until at least 70 percent of silicon layer is etched. The method further includes an overetch step, which includes a first, second, and third process steps. The first process step employs a first process recipe, the second process step employs a second process recipe, and the third process step employs a third process recipe. The second process recipe employs a second bottom bias voltage level applied to the bottom electrode which is higher than the first bottom bias voltage level employs in the first process recipe and the third bottom bias voltage level employs in the third process recipe. The first, second, and third process steps are alternated a plurality of times until silicon layer is etched through.
摘要:
A method for etching a substrate having a silicon layer in a plasma processing chamber having a bottom electrode on which the substrate is disposed on during etching. The method includes performing a main etch step. The method also includes terminating main etch step when a predefined etch depth of at least 70 percent of thickness into silicon layer is achieved. The method further includes performing an overetch step. The overetch step including a first process step and a second process step. First process step is performed using a first bottom power level applied to bottom electrode. Second process step is performed using a second bottom power level applied to bottom electrode that is lower than first bottom power level. First process and second process steps are alternately performed a plurality of times. The method yet also includes terminating overetch step after silicon layer is etched through.
摘要:
In a plasma processing system, a method for optimizing etching of a substrate is disclosed. The method includes selecting a first plasma process recipe including a first process variable, wherein changing the first process variable by a first amount optimizes a first substrate etch characteristic and aggravates a second substrate etch characteristic. The method also includes selecting second plasma process recipe including a second process variable, wherein changing the second process variable by a second amount aggravates the first substrate etch characteristic and optimizes the second substrate etch characteristic. The method further includes positioning a substrate on a chuck in a plasma processing chamber; and striking a plasma within the plasma processing chamber. The method also includes alternating between the first plasma recipe and the second plasma recipe, wherein upon completion of the alternating, the first substrate etch characteristic and the second substrate etch characteristic are substantially optimized.
摘要:
A plasma etch reactor 20 includes a upper electrode 24, a lower electrode 24, a peripheral ring electrode 26 disposed therebetween. The upper electrode 24 is grounded, the peripheral electrode 26 is powered by a high frequency AC power supply, while the lower electrode 28 is powered by a low frequency AC power supply, as well as a DC power supply. The reactor chamber 22 is configured with a solid source 50 of gaseous species and a protruding baffle 40. A nozzle 36 provides a jet stream of process gases in order to ensure uniformity of the process gases at the surface of a semiconductor wafer 48. The configuration of the plasma etch reactor 20 enhances the range of densities for the plasma in the reactor 20, which range can be selected by adjusting more of the power supplies 30, 32.
摘要:
A method and apparatus provide for etching a semiconductor wafer using a two step physical etching and a chemical etching process in order to create vertical sidewalls required for high density DRAMs and FRAMs.
摘要:
A plasma etch reactor 20 includes a upper electrode 24, a lower electrode 24, a peripheral ring electrode 26 disposed therebetween. The upper electrode 24 is grounded, the peripheral electrode 26 is powered by a high frequency AC power supply, while the lower electrode 28 is powered by a low frequency AC power supply, as well as a DC power supply. The reactor chamber 22 is configured with a solid source 50 of gaseous species and a protruding baffle 40. A nozzle 36 provides a jet stream of process gases in order to ensure uniformity of the process gases at the surface of a semiconductor wafer 48. The configuration of the plasma etch reactor 20 enhances the range of densities for the plasma in the reactor 20, which range can be selected by adjusting more of the power supplies 30, 32.
摘要:
A method and apparatus provide for etching a semiconductor wafer using a two step physical etching and a chemical etching process in order to create vertical sidewalls required for high density DRAMs and FRAMs.