摘要:
A composite material that increases in temperature upon exposure to electromagnetic radiation includes single crystal silicon carbide whiskers and fibrils in a matrix material. Also disclosed are heat-generating objects that include the composite material, and a method of generating heat.
摘要:
A composite material that increases in temperature upon exposure to electromagnetic radiation includes single crystal silicon carbide whiskers and fibrils in a matrix material. Also disclosed are heat-generating objects that include the composite material, and a method of generating heat.
摘要:
A composite material that increases in temperature upon exposure to electromagnetic radiation comprising single crystal silicon carbide whiskers and fibrils in a matrix material. Also, heat-generating objects comprising the composite material, and a method of generating heat.
摘要:
Silicon carbide fibers are produced by mixing discontinuous isotropic carbon fibers with a silica source and exposing the mixture to a temperature of from about 1450° C. to about 1800° C. The silicon carbide fibers are essentially devoid of whiskers have excellent resistance to oxidation and excellent response to microwave energy, and can readily be formed into a ceramic medium employing conventional ceramic technology. The fibers also may be used for plastic and metal reinforcement.
摘要:
Method for producing silicon carbide fibers by mixing discontinuous isotropic carbon fibers with a silica source and exposing the mixture to a temperature of from about 1450° C. to about 1800° C. The silicon carbide fibers are essentially devoid of whiskers have excellent resistance to oxidation and excellent response to microwave energy, and can readily be formed into a ceramic medium employing conventional ceramic technology. The fibers also may be used for plastic and metal reinforcement.
摘要:
A composite and pressureless sintering process for making whisker-reinforced alumina composites using about 1 to about 7.5 wt. % of a nitride modifier consisting essentially of silicon nitride, aluminum nitride, or mixtures thereof that produces a sintered body having a density of greater than 95% theoretical.
摘要:
A composite and pressureless sintering process for making whisker-reinforced alumina composites using about 2 to about 7.5 wt. % of a nitride modifier consisting essentially of silicon nitride, aluminum nitride, or mixtures thereof produces a sintered body having a density of greater than about 95% theoretical.
摘要:
A composite and pressureless sintering process for making whisker-reinforced alumina composites using a nitride modifier. The whiskers are milled to an aspect ratio of less than 10. Green preform bodies are surrounded by a carbonaceous material during the sintering process to prevent direct exposure of the body surface to the atmosphere within the sintering furnace during the sintering step.
摘要:
A catalytic reactor useful for carrying out a catalytic reaction comprises a horizontally disposed reaction zone. Foraminous retaining means are disposed within said reactor or reaction zone transversely thereof and occupying the complete cross-section of said reaction zone available for the flow of gaseous or vaporized reactants therethrough. The forminous retaining means define a transverse volume along a portion of the length of the reactor and are adapted to be filled with particle-form catalytic material. A chamber is disposed at the upper portion of and in open communication with said transverse volume. The chamber is adapted to be filled with particle-form catalytic material so as to maintain the transverse volume filled with particle-form catalytic material. The catalytic reactor is generally useful for carrying out catalytic reactions involving gaseous or vaporized reactants and a mass of particle-form catalytic material.
摘要:
A catalytic reactor useful for carrying out a catalytic reaction comprises a horizontally disposed reaction zone. Foraminous retaining means are disposed within said reactor or reaction zone transversely thereof and occupying the complete cross-section of said reaction zone available for the flow of gaseous or vaporized reactants therethrough. The foraminous retaining means define a transverse volume along a portion of the length of the reactor and are adapted to be filled with particle-form catalytic material. A chamber is disposed at the upper portion of and in open communication with said transverse volume. The chamber is adapted to be filled with particle-form catalytic material so as to maintain the transverse volume filled with particle-form catalytic material. The catalytic reactor is generally useful for carrying out catalytic reactions involving gaseous or vaporized reactants and a mass of particle-form catalytic material.