Abstract:
A method of making a photomask layout is provided. A graphic data of a photomask is provided. The graphic data includes at least one rectangular pattern. A correction step is performed to the graphic data by using a computer. The correction step includes adding a substantially ring-shaped pattern inside the rectangular pattern. A method of forming a photomask by using the photomask layout obtained by the said method is also provided. In an embodiment, the photomask is suitable for defining micro-lenses of a solid-state image sensor.
Abstract:
A method of performing optical proximity correction for preparing a mask projected onto a wafer by photolithography includes the following steps. An integrated circuit layout design including a first feature and a second feature is obtained, wherein the first feature overlaps a first boundary of two structures in the wafer. An edge of the first feature close to the second feature pertaining to a specific trend section of an experimental chart having trend sections is recognized. An optical proximity correction value is evaluated for the edge through a computer system according to a rule corresponding to the specific trend section. The layout design is compensated with the optical proximity correction value.
Abstract:
The present invention provides an OPC method. First, a mask pattern is provided. A first region and a second region are detected in the mask pattern. The mask pattern comprises at least a first pattern in the first region and a second pattern in the second pattern, and the first pattern with a first width, a first gap with a first space, the second pattern with a second width and a second gap with a second space are disposed in sequence, wherein the second space value is substantially 2.5 to 3.5 times the value of the first width. Then, a modification process is performed by changing the arrangement of the mask pattern thereby making the mask pattern become a revised pattern, so the first pattern is not influenced by light passing through the second gap during an exposure process. Finally, the revised pattern is outputted onto a mask.
Abstract:
A method for forming semiconductor layout patterns providing a pair of first layout patterns being symmetrical along an axial line, each of the first layout patterns comprising a first side proximal to the axial line and a second side far from the axial line; shifting a portion of the first layout patterns toward a direction opposite to the axial line to form at least a first shifted portion in each first layout pattern, and outputting the first layout patterns and the first shifted portions on a first mask.
Abstract:
A method of performing optical proximity correction for preparing a mask projected onto a wafer by photolithography includes the following steps. An integrated circuit layout design comprising a first feature and a second feature is obtained, wherein the first feature overlaps a first boundary of two structures in the wafer. An edge of the first feature close to the second feature pertaining to a specific trend section of an experimental chart having trend sections is recognized. An optical proximity correction value is evaluated for the edge through a computer system by a rule corresponding to the specific trend section. The layout design is compensated with the optical proximity correction value.
Abstract:
A method for forming semiconductor layout patterns providing a pair of first layout patterns being symmetrical along an axial line, each of the first layout patterns comprising a first side proximal to the axial line and a second side far from the axial line; shifting a portion of the first layout patterns toward a direction opposite to the axial line to form at least a first shifted portion in each first layout pattern, and outputting the first layout patterns and the first shifted portions on a first mask.
Abstract:
A method of performing optical proximity correction for preparing a mask projected onto a wafer by photolithography includes the following steps. An integrated circuit layout design including a first feature and a second feature is obtained, wherein the first feature overlaps a first boundary of two structures in the wafer. An edge of the first feature close to the second feature pertaining to a specific trend section of an experimental chart having trend sections is recognized. An optical proximity correction value is evaluated for the edge through a computer system according to a rule corresponding to the specific trend section. The layout design is compensated with the optical proximity correction value.
Abstract:
A method of making a photomask layout is provided. A graphic data of a photomask is provided. The graphic data includes at least one rectangular pattern. A correction step is performed to the graphic data by using a computer. The correction step includes adding a substantially ring-shaped pattern inside the rectangular pattern. A method of forming a photomask by using the photomask layout obtained by the said method is also provided. In an embodiment, the photomask is suitable for defining micro-lenses of a solid-state image sensor.