Abstract:
An electromechanical component arrangement for a gas turbine engine includes a mechanical component located at a first side of a firewall of a gas turbine engine and an electronic module of the electromechanical component in communication with the mechanical component separated from the mechanical component by a firewall, the firewall comprising a first side and a second side, the second side having a lower operating temperature than the first side. A vibration isolation structure is located at the second side. The electronic module is connected thereto and includes at least one vibration isolator secured to the firewall to vibrationally isolate the electronic module from gas turbine engine vibrations.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A waveguide is operable to route a portion of the electromagnetic signals through a waveguide transmitter interface, a waveguide medium, and a waveguide transition interface to the at least one of the sensing/control/identification devices. A remote processing unit is operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.
Abstract:
A multiplexed sensor system includes a control unit in communication with a plurality of sensors. A plurality of optic fibers defines a communication path between the plurality of sensors and the control unit. A multiplexing portion communicates with a plurality of sensors along a common one of the plurality of optic fibers and a protected channel through which at least a portion of the optic fibers are routed. The protected channel at least partially surrounds the optic fibers and shields the optic fibers from an environment outside the protected channel. A cooling flow is provided through the protective channel for minimizing temperature fluctuations within the protective channel. A method is also disclosed.
Abstract:
A system of a machine includes a network of a plurality of identification devices distributed throughout the machine. Each of the identification devices are embedded in a component of the machine and operable to communicate through a plurality of electromagnetic signals. Each identification device includes a unique code characteristic of the component and the identification device is readable by one or more readers to interrogate the unique code characteristic. Shielding surrounds at least one of the identification devices to contain the electromagnetic signals proximate to the component and a communication path is integrally formed in the component of the machine to route a portion of the electromagnetic signals through the component. A remote processing unit is operable to communicate with the network of the identification devices through the electromagnetic signals.
Abstract:
Sensing/control/identification devices of machines are provided. The devices include a shielding defining a shielded volume, a rectification and power conditioning module within the shielded volume and configured to receive electromagnetic (EM) transmissions from an EM transmitting source and convert said EM transmissions to electrical power, a communication interface module within the shielded volume and configured to receive power from the rectification and power conditioning module and at least one of receive the EM transmissions or transmit EM communications, and a control module within the shielded volume and configured to at least one of (i) receive the EM transmissions from the communication interface for processing or prepare the EM communications for transmission from the communication interface module and (ii) communicate with a remote sensor of the machine.
Abstract:
The present disclosure relates generally to a gas turbine engine that includes a fan configured to generate a fanstream and a fanstream duct configured to receive the fanstream flowing therethrough. An engine electronic component is positioned in flow communication with the fanstream. A heating element is positioned in the fanstream upstream from the engine electronic component and is operative to heat at least a portion of the fanstream in flow communication with the engine electronic component. The position of the engine electronic component passively thermally conditions the engine electronic component and the heating element actively thermally conditions the engine electronic component.
Abstract:
A low pressure compressor for a gas turbine engine includes a low pressure compressor case extending circumferentially around a central axis of the gas turbine engine. The low pressure compressor case includes an inner radial wall surrounding a low pressure compressor rotor and an outer radial wall at least partially defining a fan bypass passage of the gas turbine engine. A low pressure compressor compartment is located between the inner radial wall and the outer radial wall and an electrical component is located in the low pressure compressor compartment. An inlet port at the outer radial wall is configured to admit a cooling airflow into the low pressure compressor compartment from the fan bypass passage to cool the electrical component.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A waveguide is operable to route a portion of the electromagnetic signals through a waveguide transmitter interface and a waveguide transition interface to the at least one of the sensing/control/identification devices.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounding at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in/on a component of the machine to route a portion of the electromagnetic signals through the component. A remote processing unit is operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.
Abstract:
Sensing/control/identification devices for machines are provided. The devices include a first stage having a rectification and power conditioning module configured to receive electromagnetic (EM) transmissions via waveguide confinement and convert said EM transmissions to electrical power, a communication interface module configured to receive power from the rectification and conditioning module and at least one of receive or transmit EM transmissions/communications via waveguide confinement, and a control module configured to receive EM transmission data from the communication interface for processing and/or preparing EM communications for transmission. The devices further include a second stage having a tunable control module configured to process and convert instructions or commands from the control module of the first stage into analog or digital signals and generate and transmit an output signal. At least one connection is between the first stage and the second stage to enable communication between the first and second stages.