Abstract:
This invention relates to an apparatus for controlling the air-fuel ratio demanded by a fuel controller in order to maintain optimum performance of a catalytic converter. Provided is an open loop fuel controller comprising a detector arranged down stream of a catalyst for detecting rich breakthrough; a catalyst model having an estimator for estimating a stored oxygen level in the catalyst; a comparator for comparing an estimated stored oxygen level with a plurality of predetermined thresholds; demand adjusting means for adjusting an air fuel ratio demand in dependence upon a received signal from said comparator and upon a received signal from said detector. A method of open loop fuel control is also provided.
Abstract:
An engine controller system for a direct injection spark ignited internal combustion engine that is capable of operating a stratified mode where fuel is injected during a compression stroke of the engine and a homogeneous mode where fuels is injected during an intake stroke of the engine. The engine controller monitors adjusts the flow rate of the evaporated fuel vapors as a function of the catalyst temperature and the fuel level in the evaporated fuel vapors. The engine controller determines the fuel level in the evaporated fuel vapors as a function of the exhaust gas oxygen senor output.
Abstract:
The present invention relates to an electronically driven pressure boosting system that is used to boost the torque output of an internal combustion engine. The system comprises an electrically driven pressure charging device, an electrical supply system for providing electrical power to drive the pressure charging device including a battery and an engine-driven battery recharger, and an electronic control system for controlling the operation of the pressure charging device and the electrical supply system. The electronic control system determines one or more allowable operating limits to the operation of the pressure charging device based on the state of the electrical supply system, and drives the pressure charging device using the engine-driven battery recharger when the state of the electrical supply system is within an acceptable range. The engine control system then isolates at least partially the battery from the engine-driven battery recharger and drive the pressure charging device using the battery when the state of the electrical supply system is not within an acceptable range.
Abstract:
This invention relates to an engine torque controller for spark ignition internal combustion engines and more specifically for direct injection engines. The invention provides a torque controller and a method of controlling torque for an engine in which torque is controlled in dependence upon a filtered difference signal where the filtered difference signal is the difference between a desired torque signal and a signal representing an estimate of the current torque.