Abstract:
In a virtualized computer system operable in more than two hierarchical privilege levels, components of a hypervisor, which include a virtual machine kernel and virtual machine monitors (VMMs), are assigned to different privilege levels. The virtual machine kernel operates at a low privilege level to be able to exploit certain features provided by the low privilege level, and the VMMs operate at a high privilege level to support execution of virtual machines. Upon determining that a context switch from the virtual machine kernel to a VMM is to be performed, the computer system exits the low privilege level, and enters the high privilege level to execute a trampoline that supports context switches to VMMs, such as state changes, and then the VMM. The trampoline is deactivated after execution control is switched to the VMM.
Abstract:
A method is provided for handling interrupts in a processor, the interrupts including regular interrupts having a range of priorities and a pseudo non-maskable interrupt (PNMI) that is of a higher priority than any of the regular interrupts. The method includes the steps of obtaining an interrupt vector corresponding to a received interrupt, and if the received interrupt is a regular interrupt, enabling interrupts in the processor so that a PNMI can be received while handling the regular interrupt, executing a regular interrupt handler using the interrupt vector, and disabling interrupts in the processor. On the other hand, if the received interrupt is a PNMI, a PNMI interrupt handler is executed using the interrupt vector as an input thereto.
Abstract:
A secure mode of a computer system is used to provide simulated devices. In operation, if an instruction executing in a non-secure mode accesses a simulated device, then a resulting exception is forwarded to a secure monitor executing in the secure mode. Based on the address accessed by the instruction, the secure monitor identifies the device and simulates the instruction. The secure monitor executes independently of other applications included in the computer system, and does not rely on any hardware virtualization capabilities of the computer system.
Abstract:
An application management agent running on a wireless communications device restricts access to device functionality (e.g., applications and device features) unless the application management agent has determined that a particular configuration profile has been installed on the device (after which the application management agent permits access to device functionality, and an operating system of the device enforces policy settings specified in the configuration profile). The application management agent confirms the presence of the configuration profile by using a validation certificate to validate against a root certificate embedded in a configuration profile installed on the device. The configuration profile is configured to be non-removable, so it cannot be remove or updated, except by another configuration profile signed by the same authority. Validation against the embedded root certificate thereby implicitly confirms the presence of the configuration profile and validates the content of the configuration profile.
Abstract:
Devices are emulated as PCI devices so that existing PCI drivers can be used for the devices. This is accomplished by creating a shim PCI device with a emulated PCI configuration space, accessed via a emulated PCI Extended Configuration Access Mechanism (ECAM) space which is emulated by accesses to trapped unbacked memory addresses. When system software accesses the PCI ECAM space to probe for PCI configuration data or program base address registers of the PCI ECAM space, an exception is raised and the exception is handled by a secure monitor that is executing at a higher privilege level than the system software. The secure monitor in handling the exception emulates the PCI configuration space access of the emulated PCI device corresponding to the ECAM address accessed, such that system software may discover the device and bind and appropriately configure a PCI driver to it with the right IRQ and memory base ranges.
Abstract:
In a virtualized computer system operable in more than two hierarchical privilege levels, components of a hypervisor, which include a virtual machine kernel and virtual machine monitors (VMMs), are assigned to different privilege levels. The virtual machine kernel operates at a low privilege level to be able to exploit certain features provided by the low privilege level, and the VMMs operate at a high privilege level to support execution of virtual machines. Upon determining that a context switch from the virtual machine kernel to a VMM is to be performed, the computer system exits the low privilege level, and enters the high privilege level to execute a trampoline that supports context switches to VMMs, such as state changes, and then the VMM. The trampoline is deactivated after execution control is switched to the VMM.
Abstract:
A method of providing a backdoor interface between software executing in a virtual machine and a hypervisor executing on a computing system that supports the virtual machine includes trapping, at the hypervisor, an exception generated in response to execution of a debug instruction on a central processing unit (CPU) by the software; identifying, by an exception handler of the hypervisor handling the exception, an equivalence between an immediate operand of the debug instruction and a predefined value; and invoking, in response to the equivalence, a backdoor service of the hypervisor using state of at least one register of the CPU as parametric input, the state being set by the software prior to executing the debug instruction.
Abstract:
Examples provide for automatically provisioning hosts in a cloud environment. A cloud daemon generates a cloud host-state configuration, for a given cloud instance of a host, stored on a cloud metadata service prior to first boot of the given cloud instance of the host. A first boot of a plurality of cloud instances of hosts is performed using a stateless, master boot image lacking host-specific configuration data. On completion of the first boot of a given cloud instance of a host, the cloud host-state configuration is installed on the master boot image to generate a self-configured boot image including host-specific configuration data for the given cloud instance of the host. A second boot is performed on the given cloud instance of the host by executing the self-configured boot image to automatically provision the given cloud instance of the host in the cloud environment.
Abstract:
A method is provided for handling interrupts in a processor, the interrupts including regular interrupts having a range of priorities and a pseudo non-maskable interrupt (PNMI) that is of a higher priority than any of the regular interrupts. The method includes the steps of obtaining an interrupt vector corresponding to a received interrupt, and if the received interrupt is a regular interrupt, enabling interrupts in the processor so that a PNMI can be received while handling the regular interrupt, executing a regular interrupt handler using the interrupt vector, and disabling interrupts in the processor. On the other hand, if the received interrupt is a PNMI, a PNMI interrupt handler is executed using the interrupt vector as an input thereto.
Abstract:
In a computer system with multiple central processing units (CPUs), initialization of a memory management unit (MMU) for a secondary CPU is performed using an exception generated by the MMU. In general, this technique leverages the exception handling features of the secondary CPU to switch the CPU from executing secondary CPU initialization code with the MMU “off” to executing secondary CPU initialization code with the MMU “on.” Advantageously, in contrast to conventional techniques for MMU initialization, this exception-based technique does not require identity mapping of the secondary CPU initialization code to ensure proper execution of the secondary CPU initialization code.