摘要:
Crankcase ventilation filter systems are described, along with components and selected features thereof. Example features include preferred use of a backpressure limiting valve regulation (regulator) arrangement; and, a vacuum limiting valve regulation (regulator) arrangement. An example embodiment is provided which use two filter cartridges and two drain arrangements. Another example is provided which uses a single cartridge. Example filter cartridges are depicted and described.
摘要:
According to the present disclosure, arrangements, systems, components, features and methods for separating hydrophobic fluid such as oil entrained as aerosols from gas streams, such as crankcase ventilation gas streams are described. The components specifically described include a filter cartridge with preferred features for interaction with a filter housing, and a filter housing with preferred features for convenient installation. Methods of assembly and use are also characterized.
摘要:
According to the present disclosure, arrangements, systems, components, features and methods for separating hydrophobic fluid such as oil entrained as aerosols from gas streams, such as crankcase ventilation gas streams are described. The components specifically described include a filter cartridge with preferred features for interaction with a filter housing, and a filter housing with preferred features for convenient installation. Methods of assembly and use are also characterized
摘要:
The assemblies of the invention can comprise a fine fiber layer having dispersed within the fine fiber layer an active particulate material. Fluid that flows through the assemblies of the invention can have any material dispersed or dissolved in the fluid react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
A polymer alloy has been developed comprising a polysulfone and a vinyl lactam polymer. The resulting alloy has excellent thermal characteristics and even in the presence of substantial quantities in vinyl lactam polymers, has solvent resistance to both organic and aqueous solvent materials. The materials, when dissolved in solvents, can be spun from a variety of solvents into a variety of useful fiber materials. The resulting fine fiber, microfiber and nanofiber materials have excellent thermal and chemical resistance for a variety of fiber applications. The polymer alloys of the invention can be spun into nanofiber mats that can act as a filtration media and can also be combined into conventional substrate materials for fabrication into filter structures.
摘要:
The invention relates to a web or filter structure such as the filtration media comprising a collection of fiber comprising a first polymer and a second polymer in a fine fiber or fine fiber web structure. The combination of two polymers provides improved fiber rheology in that the fiber has excellent temperature and mechanical stability. The combination of polymers imparts the properties of elasticity or tackiness, which is desirable for adhering particles to the fiber web, with high temperature resistance.
摘要:
A polymer alloy has been developed comprising a polysulfone and a vinyl lactam polymer. The resulting alloy has excellent thermal characteristics and even in the presence of substantial quantities in vinyl lactam polymers, has solvent resistance to both organic and aqueous solvent materials. The materials, when dissolved in solvents, can be spun from a variety of solvents into a variety of useful fiber materials. The resulting fine fiber, microfiber and nanofiber materials have excellent thermal and chemical resistance for a variety of fiber applications. The polymer alloys of the invention can be spun into nanofiber mats that can act as a filtration media and can also be combined into conventional substrate materials for fabrication into filter structures.
摘要:
A polymer alloy has been developed comprising a polysulfone and a vinyl lactam polymer. The resulting alloy has excellent thermal characteristics and even in the presence of substantial quantities in vinyl lactam polymers, has solvent resistance to both organic and aqueous solvent materials. The materials, when dissolved in solvents, can be spun from a variety of solvents into a variety of useful fiber materials. The resulting fine fiber, microfiber and nanofiber materials have excellent thermal and chemical resistance for a variety of fiber applications. The polymer alloys of the invention can be spun into nanofiber mats that can act as a filtration media and can also be combined into conventional substrate materials for fabrication into filter structures.
摘要:
The invention relates to a web or filter structure such as the filtration media comprising a collection of fiber comprising a first polymer and a second polymer in a fine fiber or fine fiber web structure. The combination of two polymers provides improved fiber rheology in that the fiber has excellent temperature and mechanical stability. The combination of polymers imparts the properties of elasticity or tackiness, which is desirable for adhering particles to the fiber web, with high temperature resistance.
摘要:
A polymer alloy has been developed comprising a polysulfone and a vinyl lactam polymer. The resulting alloy has excellent thermal characteristics and even in the presence of substantial quantities in vinyl lactam polymers, has solvent resistance to both organic and aqueous solvent materials. The materials, when dissolved in solvents, can be spun from a variety of solvents into a variety of useful fiber materials. The resulting fine fiber, microfiber and nanofiber materials have excellent thermal and chemical resistance for a variety of fiber applications. The polymer alloys of the invention can be spun into nanofiber mats that can act as a filtration media and can also be combined into conventional substrate materials for fabrication into filter structures.