Abstract:
The invention provides a polycrystalline silicon rod having a total diameter of at least 150 mm, including a core A having a porosity of 0 to less than 0.01 around a thin rod, and at least two subsequent regions B and C which differ in porosity by a factor of 1.7 to 23, the outer region C being less porous than region B.
Abstract:
A method for mechanically classifying polycrystalline silicon chunks or granules with a vibratory screening machine, involves setting silicon chunks or granules present on one or more screens each comprising a screen lining in vibration such that the silicon chunks or silicon granules perform a movement which causes the silicon chunks or silicon granules to be separated into various size classes, wherein a screening index is greater than or equal to 0.6 and less than or equal to 9.0.
Abstract:
Comminuted polysilicon with reduced contamination is prepared using multi-step comminution employing comminution with comminution tools of differing tungsten carbide content and/or grain size.
Abstract:
The invention provides chunk polycrystalline silicon having a concentration of carbon at the surface of 0.5-35 ppbw. A process for cleaning polycrystalline silicon chunks having carbon contaminations at the surface, includes a thermal treatment of the polycrystalline silicon chunks in a reactor at a temperature of 350 to 600° C., the polycrystalline silicon chunks being present in an inert gas atmosphere during the thermal treatment, and the polycrystalline silicon chunks after the thermal treatment having a concentration of carbon at the surface of 0.5-35 ppbw.
Abstract:
A device for removing polycrystalline silicon rod pairs from a Siemens reactor has a body dimensioned to fit over a single rod pair. Once the rod pair is within the body, the body and enclosed rod pair is removed.
Abstract:
A method for mechanically classifying polycrystalline silicon chunks or granules with a vibratory screening machine, involves setting silicon chunks or granules present on one or more screens each comprising a screen lining in vibration such that the silicon chunks or silicon granules perform a movement which causes the silicon chunks or silicon granules to be separated into various size classes, wherein a screening index is greater than or equal to 0.6 and less than or equal to 9.0.
Abstract:
The invention provides a polycrystalline silicon rod having a total diameter of at least 150 mm, including a core A having a porosity of 0 to less than 0.01 around a thin rod, and at least two subsequent regions B and C which differ in porosity by a factor of 1.7 to 23, the outer region C being less porous than region B.
Abstract:
Production of highly pure comminuted polycrystalline silicon from polycrystalline silicon rods produced by the Siemens process is facilitated by removal of graphite residues from the electrode ends of the rods by removing the contaminated end portions by means of mechanical impulses.
Abstract:
Polycrystalline silicon in the form of chunks packed in plastic bags containing a mass of at least 5 kg, including chunks of size from 20 to 200 mm, wherein any fines fraction in the plastic bag is less than 900 ppmw, preferably less than 300 ppmw, more preferably less than 10 ppmw. The polycrystalline silicon, after comminution of a silicon rod obtained by CVD (Siemens process), is sorted and classified, optionally dedusted and then metered and packed. Metering and packing units include elements for removing fines or small particles during metering and during packing. The packing unit includes an energy absorber or a reservoir vessel which enables sliding or slipping of the silicon chunks into the plastic bag. Gas flow generated within the plastic bag after the bag has been filled transports the dust or small particles out of the bag, and these are sucked out with a suction device.
Abstract:
The invention provides a polycrystalline silicon chunk having a concentration of 1-50 ppta of boron and 1-50 ppta of phosphorus at the surface.