摘要:
The present invention discloses an SOI CMOS device having a vertical gate structure, comprising: an SOI substrate, and an NMOS region and a PMOS region grown on the SOI substrate, wherein the NMOS region and the PMOS region share one vertical gate region, said vertical gate region lying in the same plane as the NMOS region and the PMOS region and between the NMOS region and the PMOS region; a gate oxide layer is arranged between the vertical gate region and the NMOS region for isolation; and a gate oxide layer is arranged between the vertical gate region and the PMOS region for isolation. The present invention occupies small area, contains less pattern layers, requires a simple process, has an open body region that can completely avoid the floating effect of the traditional SOI CMOS device, and is convenient to parasitic resistance and capacitance tests.
摘要:
The present invention relates to a method of fabricating an SOI SJ LDMOS structure that can completely eliminate the substrate-assisted depletion effects, comprising the following steps: step one: a conducting layer is prepared below the SOI BOX layer using the bonding technique; the conducting layer is prepared in the following way: depositing a barrier layer on a first bulk silicon wafer, and then depositing a charge conducting layer, thereby obtaining a first intermediate structure; forming a silicon dioxide layer on a second bulk silicon wafer via thermal oxidation, then depositing a barrier layer, and finally depositing a charge conducting layer, thereby obtaining a second intermediate structure; bonding the first intermediate structure and the second intermediate structure using the metal bonding technology to arrange the conducting layer below the SOI BOX layer; step two: a SJ LDMOS structure is fabricated on the SOI substrate having a conducting layer. The present invention is capable of releasing the charge accumulated at the lower interface of the BOX layer, eliminating the effect of the vertical charge on the charge balance between the p-type pillar and the n-type pillar, and therefore completely eliminating the substrate-assisted depletion effects and elevating the breakdown voltage of the device.
摘要:
The present invention relates to a method of depositing a gate dielectric, a method of preparing a MIS capacitor and the MIS capacitor. In the method of depositing the gate dielectric, a semiconductor substrate surface is preprocessed with oxygen plasma and nitrogen-containing plasma to form a nitrogen-containing oxide layer thereon. Then, a high-k gate dielectric layer is grown on the nitrogen-containing oxide layer surface by a plasma-enhanced atomic layer deposition process, and the oxide layer converts during the gate dielectric layer growth process into a buffer layer of a dielectric constant higher than SiO2. Then, a metal electrode is formed on both an upper layer and a lower layer of the thus-formed semiconductor construction, so that a MIS capacitor is prepared. According to the present invention, the formation of the buffer layer enables the interface characteristics between semiconductor materials and high-k gate dielectric layers to be improved effectively, equivalent oxide thickness (EOT) to be reduced and electrical properties to be enhanced.