Abstract:
The present invention provides a coating that emits magnetic resonance signals and a method for coating medical devices therewith. The coating includes a paramagnetic metal ion-containing polymer complex that facilitates diagnostic and therapeutic techniques by readily visualizing medical devices coated with the complex.
Abstract:
A gelatin-based substrate for fabricating protein arrays, the substrate containing: gelatin and a trifunctional compound A—L—B; wherein A is a functional group capable of interacting with the gelatin; L is a linking group capable of interacting with A and with B; and B is a functional group capable of interacting with a protein capture agent. A may be the same or different from B.
Abstract:
A drop on demand microfluidic ink jet printing system includes an ink flow chamber having a nozzle opening in a wall of the flow chamber through which ink droplets are ejected when ink in the flow chamber is at or above a predetermined positive pressure. An inlet channel opens into the flow chamber to supply thermally-responsive ink to the flow chamber at or above the predetermined pressure. A microfluidic outlet channel communicates the flow chamber with a low pressure ink reservoir such that thermally-responsive ink is normally transported from the flow chamber at a flow velocity sufficient to maintain ink in the flow chamber at a pressure less than the predetermined positive pressure. A valve selectively restricts the flow of the thermally-responsive ink through the microfluidic outlet channel sufficiently to cause an increase in ink pressure in the flow chamber to at least the predetermined positive pressure, the valve including a heater in contact with at least a portion of the associated microfluidic outlet channel, whereby the viscosity of the thermally-responsive ink can selectively be increased by heat from the heater to restrict the flow of the thermally-responsive ink from the flow chamber such that an ink droplet is ejected through the nozzle opening.
Abstract:
A method of making an OLED display having a plurality of OLED devices includes providing a plurality of OLED devices on a substrate, such OLED devices sharing a common light-transmissive electrode; forming a patterned conductive layer structure over the common light-transmissive electrode to define wells in alignment with emissive areas of one or more OLED devices; and providing optical material into one or more wells
Abstract:
A gelatin-based substrate for fabricating protein arrays, the substrate comprising: gelatin having at least one surface; a polymer scaffold affixed to the gelatin surface; wherein the polymer in the scaffold is rich in reactive units capable of immobilizing proteins.
Abstract:
Disclosed is media for receiving jetted ink comprising a support bearing a predetermined array of three dimensional cells composed of hydrophobic walls and having a hydrophilic base, the cross-section of the cells parallel to the support being of a size sufficiently small so as to increase the range of color density gradations attainable.
Abstract:
A nozzle plate for an ink jet printhead, the nozzle plate having the following layers in the order recited: a) a first monomolecular layer of an organic material having first and second functional groups, the first functional group of the first monomolecular layer being bound to the surface of the nozzle plate, and the second functional group of the first monomolecular layer being bound to a second monomolecular layer, and b) the second monomolecular layer of an organic material having first and second functional groups, the first functional group of the second monomolecular layer being bound to the second functional group of the first monomolecular layer, and the second functional group of the second monomolecular layer is an anti-wetting group.
Abstract:
The present invention provides a coating that emits magnetic resonance signals and a method for coating medical devices therewith. The coating includes a paramagnetic metal ion-containing polymer complex that facilitates diagnostic and therapeutic techniques by readily visualizing medical devices coated with the complex.
Abstract:
The present invention generally relates to the use of small particles, such as micro particles or nanoparticles, to produce a therapeutic scar such as “trans-mural” scarring or other desired “deep tissue” scarring. In one preferred embodiment, these particles can be delivered to a target location by an implant. More specifically, these particles can be incorporated into the structure of implants or into the coatings on implants. In another preferred embodiment, these small particles can be delivered directly with a catheter by electrophoresis or hydraulic pressure.
Abstract:
A microfluidic system is provided for controlling delivery and mixing of thermally-responsive fluids. A plurality of microfluidic inlet channels open into a mixing chamber. A valve is associated with each of the inlet channels for controlling the flow of the thermally-responsive fluids through the inlet channels. The valves include a heater in thermal contact with at least a portion of the associated inlet channel, whereby the viscosity of the thermally-responsive fluids can selectively be controlled by heat to cause a change in flow of the thermally-responsive fluids through the inlet channels. A plurality of microfluidic outlet channels may be provided for transporting mixed fluids from the mixing chamber. A valve associated with each of the outlet channels controls the flow of the mixed thermally-responsive fluids through the outlet channels. These valves also include a heater in contact with at least a portion of the associated outlet channel, whereby said mixed thermally-responsive fluids can be directed from the mixing chamber selectively through each outlet channel.