Abstract:
A solid fuel is formed in a cuber to form body pieces formed of materials extruded through a die with a density greater than 35 lbs/cu ft; an energy content greater than 6500 BTU/lb; transverse dimensions less than 1.5 inches; and a length less than 4 inches; from plant biomass material which contains components when extended of greater than 1.0 inch. Primarily the materials are paper or other cellulose product and crop residue such as wheat straw. The cellulose and lignin from these materials act without additional binders as binders and encasing materials. The moisture content is maintained at a target value by mixing selected quantities of the materials without drying. The cubing machine has a feeding system where the space between the inner rotor and outer casing is smaller than 4 inches and the height of the outer flight is less than 1 inch.
Abstract:
The invention is directed to a device for converting free-flowing feed material (43), for example, foils, fibers, foam products, powders, and the like of organic and/or inorganic materials into granules, agglomerates, pellets, green compacts, and the like by applying pressure with a cylindrical compression chamber (17), which is arranged around an axis (1). At its periphery, the compression chamber (17) is confined by a ring element (18) with passage openings (19), and it accommodates a pressure element (10) that rotates around the axis (1) in the direction of rotation (27). The feed material (43) is axially conveyed to the compression chamber (17) and is radially supplied to the ring element (18) by the pressure element (10). The pressure element (10) includes at least one pressing blade (9), which extends to and interacts with the ring element (18), the front flank (28) of said pressing blade in the direction of rotation (27) being curved such that between pressure arm (9) and ring element (18), a narrowing compression zone (30) is formed, the end of which is formed by a pressure piece (29, 42). Due to the thus fixedly defined geometry of the compression zone, various process parameters, for example, pressure, temperature, and viscosity of the feed material, cannot be influenced while being processed. The remedy of this disadvantage provided by the present invention is such that the segment of the pressing blade (9), which is positioned in front of the pressure piece (29, 42) in the direction of rotation (27), and which forms the compression chamber (30), is at least in part formed by a shape component (31, 40), which is detachably connected to the pressing blade (9), the spine of which (34) determines the contour of the compression zone (30).
Abstract:
The invention relates to a pelleting press for the production of feed pellets for the like. The aim of the invention is to enable easy and economical separation of the mold in order to change said molds. This is achieved in that guided clamping elements (17) are arranged between the mold (8) and a pressure ring (13) of the mold carrier (11) in such a way that they can be displaced axially (11) so that the mold (8) can be released and clamped by axial displcement by means of a flat contact surface between the screws (18) of the clamping segments (17) and the pressure ring (13).
Abstract:
A device which takes cut alfalfa laying in a field and turns it into a plurality of pressed cubes. A water spray conditions the cut alfalfa to have the right moisture content for subsequent processing. A pick up station delivers the alfalfa off of the ground and feeds it to an auger and paddle area for subsequent conveyance to a chopping station where the alfalfa is comminuted to the appropriate length. Thereafter, the chopped alfalfa is conveyed into a press where the cubes of alfalfa are formed by extrusion. Conveyors allow the formed cubes to be placed in a trailer hitched to the vehicle. By providing a vehicle which processes the alfalfa in the field, enhanced quality of the alfalfa cubes and efficiency results.
Abstract:
A pellet mill for pelleting feed product, has a pelleting die with a plurality of extrusion holes for extruding the feed product; rollers, rotatable relative to the pelleting die, for forcing feed product through the extrusion holes; provision for intensively mixing and shearing the feed product before introducing the feed product to the pelleting die; and a device for positively conveying the feed product into the provision for intensively mixing and shearing.
Abstract:
A cleaning process and apparatus for cleaning small diameter clogged holes or passages fashioned as deep through-holes or small diameter through-holes of varying sizes. The holes may be provided in dies for enabling a pressing of materials for manufacturing of pellets such as feed stuff pellets. The cleaning is effected by directing at least one water jet having a diameter less than one-half of a smallest diameter of the hole or passage to be cleaned. The cleaning medium is supplied possibly at supersonic speed. It is also possible to clean radially oriented holes or passages in the die by ejecting the cleaning medium from nozzles of the apparatus.
Abstract:
A pellet mill (1) is provided with a control unit with the help of which a desired value of press roll slippage, e.g. zero or a pre-selectable peak value can be maintained. For this purpose, the pellet mill (1) comprises a first measuring unit (27, 28) for measuring the circumferential speed of the perforated die (8) as well as a second measuring unit (23, 24) for measuring the circumferential speed of the press rolls (11, 12). In a comparator (30, 31), the two circumferential speeds are compared and on exceeding a pre-selectable peak value for the difference of the two measured values, a slip signal is created by means of which the mill drive, and/or the supply of basic material to be formed is influenced in such a manner that the slippage will be prevented.
Abstract:
A feed device for low-density particulate materials is disclosed for a pelletizing machine. A fin (25) forming a helicoidal spiral on the outer surface of a tubular dome (24) connected to a drive shaft (23) carries the material to one end of the dome, where the volume of air contained in the bulk material is diverted toward the interior of the dome (24) without causing a flow contrary to the displacement of the material, thus eliminating the problem of flow interruptions caused by air entrapment.
Abstract:
A granulating apparatus includes a hollow roll equipped on its internal circumference with axially extending toothed ledges and a co-rotating contact pressure roll, equipped with corresponding axial toothed ledges on its outer circumference, and engaging in the hollow roll in the lower area of the latter. The hollow roll is provided with axially extending rows of holes between its toothed ledges. The toothed ledges of the hollow roll and pressure roll intermesh to form a tapering nip zone therebetween. The material to be granulated is fed into the hollow roll and into the nip zone. By means of the cooperation of the toothed ledges, the material is pressed out forcibly and volumetrically in the downward direction. The drops being formed fall onto a cooling conveyor and are allowed to solidify thereon. The mass is extruded forcibly and with a defined volume. By virtue of the cooperation of rotating parts, high production rates are possible.
Abstract:
The rear end of a rotary drying drum (1) is provided with a peripheral channel (10) in which dried material to be briquetted, such as green crops, wood flakes or peat, is accumulated and carried along. The bottom of the channel (10) is formed by the inner periphery of a ring of dies (18), in which the formation of briquettes takes place by means of a pressure roller (17) operating in the channel (10) and compressing the material against the frictional resistance in the dies.The material has previously been precompressed by an endless band (19) likewise operating in the channel (10), which band preferably runs at the same peripheral speed as the pressure roller (17) and the inner side of the die ring (18).