Abstract:
A transport apparatus includes a transport roller having a first supported portion and a second supported portion at positions separated in a first direction, and configured to abut against a sheet, rotate in a second direction about a rotation axis extending in the first direction, and transport the sheet; a first support member configured to rotatably support the transport roller, the first support member having a first receiving portion which is in the form of a circular arc and configured to abut against a portion in a circumferential direction of an outer periphery of the first supported portion; and a second support member configured to rotatably support the transport roller, the second support member having a second receiving portion which is in the form of a circular arc and configured to abut against a portion in a circumferential direction of an outer periphery of the second supported portion.
Abstract:
A medium transport direction switching mechanism may be provided of a simple configuration which is capable of switching the transport direction of a transported information recording medium. One end may be a biasing member for biasing a pinch roller toward a transport roller engages a support shaft which supports the pinch roller, whereas the other end of the biasing member engages a retaining member which retains the support shaft. In the medium transport direction switching mechanism, rotational behavior of the pinch roller centering upon a rotational center of the transport roller is possible between a first facing position and a second facing position, wherein the pinch roller moves to the first facing position when the transport roller rotates positively, and moves to the second facing position when the transport roller rotates negatively.
Abstract:
An arrangement in connection with a spreader roll drive where the driving motor is directly connected to the one end of the spreader roll. Bearings support the end of the stationary axle within the drive shaft. The drive shaft is supported by bearings within a spherical ball clamp, which is held by a spherical cavity in a bracket. The drive shaft is connected to a motor or a motor and gearbox arrangement by a flexible coupling.
Abstract:
An equalizing roll and web tracking apparatus to be used in manufacturing for providing equal tension across a web during winding operations such as used in polymer film applications, corrugators, paper machines, printing presses, cloth winders, and metal winding operations. The equalizing roll utilizes a common axis shaft mounted horizontally on two bearings or clamped rigid supports allowing for rotation. Mounted in the center of the axis shaft is a bearing assembly having convex and concave portions disposed within a sleeve. The bearing assembly is centrally mounted inside a hollow cylinder or roll machined to be in balance with respect to the centrally disposed bearing assembly. The mating of the concave and convex portions of the bearing permits a selected degree of lateral rotation in a range of from about 1 degree to about 10 degrees. As the web runs over the roll, any imbalance of lateral tension will cause the roll to pivot at it's center permitting the roll to move upward on the side of least tension until the web tension is equalized across the entire roll. The equalizing roll tracking apparatus utilizes an adjustable control arm assembly having a pair of adjustable pivot arms with steering arms linked to sensor arms. The distal ends of the sensor arms are in contact with the outer edges of a web, sheet, or belt of material supported by at least one idler roll and utilizing at least one equalizing roll. The steering arms float on the outer diameter of the equalizing roll. The sensor arms are pivotally linked to the steering arms so that the misalignment of the belt, sheet or web moves the sensor arms slightly causing the steering arms to pivot and exert pressure on the equalizing roll thereby counteracting and aligning the direction of the web, belt, or sheet of material supported thereby.
Abstract:
A sheet conveying device includes a sheet detection unit and a position adjusting mechanism. The position adjusting mechanism is disposed on a downstream side of the sheet detection unit in a sheet conveying direction in the sheet conveying path, includes an adjusting roller pair, and performs skew correction and positional displacement correction of a sheet, while conveying the sheet. The sheet conveying path includes a first conveying roller pair disposed on an upstream side of the position adjusting mechanism in the sheet conveying direction, and a curved part disposed between the adjusting roller pair and the first conveying roller pair, which curves in an S shape so as to be convex in a front and back side direction of the sheet alternately at different positions in the sheet conveying direction. The adjusting roller pair nips and conveys the sheet together with the first conveying roller pair.
Abstract:
A transport device includes a drive roller and a driven roller. The drive roller transports paper-sheets in a predetermined transport direction by rotation thereof. The driven roller rotates with rotation of the drive roller, and regardless of from which direction the paper-sheets hit a contact point with the first roller, moves in a direction diagonally forward than a vertical direction with respect to the transport direction. The transport device further includes a bearing groove formed so that a shaft of the driven roller moves in a direction diagonally forward than the vertical direction with respect to the transport direction along an inclined surface.
Abstract:
A transport device includes a drive roller and a driven roller. The drive roller transports paper-sheets in a predetermined transport direction by rotation thereof. The driven roller rotates with rotation of the drive roller, and regardless of from which direction the paper-sheets hit a contact point with the first roller, moves in a direction diagonally forward than a vertical direction with respect to the transport direction. The transport device further includes a bearing groove formed so that a shaft of the driven roller moves in a direction diagonally forward than the vertical direction with respect to the transport direction along an inclined surface.
Abstract:
An image forming apparatus includes an image forming unit configured to form an image on a sheet, a duplex conveyance path through which the sheet having the image formed by the image forming unit on a first side passes when an image is formed on a second side that is a back side of the first side, a guiding member provided along the duplex conveyance path, a reversing roller pair capable of rotating in a forward direction and in a reverse direction, h, and a conveyance roller pair provided on the duplex conveyance path, wherein at least one of the reversing roller pair is inclined to the width direction so that, in the width direction, the side end of the sheet being conveyed by the reversing roller pair rotating in the reverse direction moves closer to the contact portion.
Abstract:
An image forming apparatus includes an image forming unit configured to form an image on a sheet, a duplex conveyance path through which the sheet having the image formed by the image forming unit on a first side passes when an image is formed on a second side that is a back side of the first side, a guiding member provided along the duplex conveyance path, a reversing roller pair capable of rotating in a forward direction and in a reverse direction, h, and a conveyance roller pair provided on the duplex conveyance path, wherein at least one of the reversing roller pair is inclined to the width direction so that, in the width direction, the side end of the sheet being conveyed by the reversing roller pair rotating in the reverse direction moves closer to the contact portion.
Abstract:
A bendable cylinder (1, 2), especially a spreader for spreading a web-like material, said cylinder comprising a continues tubular cylinder jacket (1) of composite material and a fixed shaft part (2) on which the cylinder jacket is rotatably mounted with at least two bearings (31, 32) at either end, and said cylinder additionally comprising a bending mechanism provided at either end of the cylinder jacket and comprising an adjusting part (5), such as an adjusting screw, for bending the cylinder jacket, which cylinder has an inner bushing part (33) fitted at least partially inside the cylinder at either end of it, the bending mechanism being fitted in said bushing part, so that, to bend and adjust the cylinder jacket (1), the angular position between a shaft portion (22) and the bushing part (33) is changed, and the bearings (31, 32) at either end are fitted between the inner bushing part (3) and an outer bushing part (30) fixedly arranged inside the cylinder jacket, and the inner and outer bushing parts, the bending mechanism and the bearings form a module (3) that can be mounted as a single unit.