Abstract:
In accordance with the invention, there are nanoscale electron emitters, field emission light emitting devices, and methods of forming them. The nanoscale electron emitter can include a first electrode electrically connected to a first power supply and a second electrode electrically connected to a second power supply. The nanoscale electron emitter can also include a nanocylinder electron emitter array disposed over the second electrode, the nanocylinder electron emitter array having a plurality of nanocylinder electron emitters disposed in a dielectric matrix, wherein each of the plurality of nanocylinder electron emitters can include a first end connected to the second electrode and a second end positioned to emit electrons, the first end being opposite to the second end.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or snore first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or snore first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or more first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
In accordance with the invention, there are field emission light emitting devices and methods of making them. The field emission light emitting device can include a plurality of spacers, each connecting a substantially transparent substrate to a backing substrate. The device can also include a plurality of pixels, wherein each of the plurality of pixels can include one or more first electrodes disposed over the substantially transparent substrate, a light emitting layer disposed over each of the one or more first electrodes, and one or more second electrodes disposed over the backing substrate, wherein the one or more second electrodes and the one or more first electrode are disposed at a predetermined gap in a low pressure region. Each of the plurality of pixels can further include one or more nanocylinder electron emitter arrays disposed over each of the one or more second electrodes.
Abstract:
In accordance with the invention, there are nanoscale electron emitters, field emission light emitting devices, and methods of forming them. The nanoscale electron emitter can include a first electrode electrically connected to a first power supply and a second electrode electrically connected to a second power supply. The nanoscale electron emitter can also include a nanocylinder electron emitter array disposed over the second electrode, the nanocylinder electron emitter array having a plurality of nanocylinder electron emitters disposed in a dielectric matrix, wherein each of the plurality of nanocylinder electron emitters can include a first end connected to the second electrode and a second end positioned to emit electrons, the first end being opposite to the second end.
Abstract:
A diamond electron source in which a single sharpened tip is formed at one end of a pillar-shaped diamond monocrystal of a size for which resist application is difficult in a microfabrication process, as an electron emission point used in an electron microscope or other electron beam device, and a method for manufacturing the diamond electron source. One end of a pillar-shaped diamond monocrystal 10 is ground to form a smooth flat surface 11, and a ceramic layer 12 is formed on the smooth flat surface 11. A thin-film layer 14 having a prescribed shape is deposited on the ceramic layer 12 using a focused ion beam device, after which the ceramic layer 12 is patterned by etching using the thin-film layer 14 as a mask. A single sharpened tip is formed at one end of the pillar-shaped diamond monocrystal 10 by dry etching using the resultant ceramic mask.