Abstract:
Tire tread for civil engineering works vehicle, this tread having a tread surface (10) intended to come into contact with the ground, this tread comprising a central part (21) delimited by grooves (3) of circumferential overall orientation, these grooves delimiting lateral parts (22) axially towards the outside of the central part (21), each lateral part (22) being provided with a plurality of transverse grooves (6) delimiting a plurality of blocks (7), the transverse grooves (6) having a cross section of minimum area (ST) and being distributed substantially uniformly in the circumferential direction, this tread being characterized in that the central part (21) is provided with a plurality of channels (51) extending transversely under the tread surface (10) and passing right through the said central part (21), each channel (51) comprising a first and a second end (52, 51), these first and second ends opening into the grooves (3) of circumferential overall orientation, at least one end of each channel opening into a transverse groove (6) of the shoulder parts (22), and in that each channel (51) has a cross-sectional area (SC) at least equal to 5% of the area of the minimum cross section (ST) of the transverse groove (6) into which it opens.Tire provided with such a tread.
Abstract:
A motorcycle tire for running on rough terrain comprises a tread portion having a unidirectional tread pattern and provided with T-sided blocks having a top surface, a heel-side sidewall surface extending from a heel-side edge of the top surface, and a toe-side sidewall surface extending from a toe-side edge of the top surface. The heel-side sidewall surface has an inclination angle α of from 0 to 15 degrees. The toe-side sidewall surface has a radially outer region having a height of from 20 to 55% of the block height and inclined at an angle β of from 20 to 45 degrees. A radially inner region of the toe-side sidewall surface has: a central part inclined at the same angle β as the radially outer region; a pair of lateral parts located one on each side of the central part and having an inclination angle γ of from 0 to 15 degrees; and a pair of stepped parts extending between the lateral parts and the central part in a direction crosswise to the toe-side edge.
Abstract:
A pneumatic tire comprises a tread portion provided along each tread edge with shoulder blocks defined by a circumferentially extending shoulder main groove and shoulder lateral grooves extending from the shoulder main groove to the tread edge. The shoulder main groove is made up of groove segments curved convexly toward the tire equator so that each groove segment comprises a first inclined part and a second inclined part. The shoulder lateral grooves extend at 45 to 90 degrees with respect to the tire circumferential direction, and are coupled with the first inclined parts of the groove segments. The shoulder blocks are each subdivided by a shoulder sub groove extending at an angle of from 15 to 45 degrees with respect to the tire circumferential direction. The shoulder sub groove has an axially outer end connected with the shoulder lateral groove and an axially inner end coupled with the second inclined part.
Abstract:
It aims to provide a heavy duty pneumatic tire with block patterns and capable of improving deflected wear resisting performances without sacrificing wet grip performances or on-snow performances and that can particularly be favorably used for all seasons. The present invention comprises block patterns employing at least three types of blocks 4 comprised of central blocks 4C delimited by the central longitudinal groove 2M, the intermediate longitudinal grooves 2M, and the central lateral grooves 3C, intermediate blocks 4M delimited by the intermediate longitudinal grooves 2M, the outer longitudinal grooves 2S and the intermediate lateral grooves 3M, and outer blocks 4S that are delimited by outer longitudinal grooves 2S, outer lateral grooves 3S that extend from this outer longitudinal grooves 2S to the tread ends E, and wherein longitudinal length ratios (L4/W4) of blocks 4, groove width ratios of longitudinal grooves and lateral grooves (w2/w3), maximum widths of blocks, minimum widths of blocks and ratios thereof (W4max/W4min), and circumferential edge components and tire axial edge components and ratios thereof (EC/EL) at respective stages of wear are defined to be within specified ranges.
Abstract:
A pneumatic tire according to the present invention includes blocks on its tread which are segmented by plural circumferential grooves 3 extending along a tire circumferential direction and plural lateral grooves 5 extending along a tread width direction. Circumferential sipes extending along the tire circumferential direction are provided in the blocks. Inside circumferential sipes extend straight along a tire radial direction and outside circumferential sipes extend along the tire radial direction in zigzag patterns. According to the present invention, a handling performance, especially, a cornering performance can be improved regardless of road surface conditions.
Abstract:
A studless tire capable of suppressing a vehicle from staggering at the time of braking on icy and snow-covered roads, including a tread portion 2 provided with at least six block rows R1 to R4, wherein each block B is provided with sipes having a depth of at least 3.0 mm, and the block rows comprises at least two crown block rows CR disposed in a crown region Ac extending from the tire equator C as its center to have a width of 50% of the tread width TW, and at least two shoulder block rows Sh disposed on each axially outer side of the crown block rows CR, and wherein lateral grooves 4 provided in a block row are inclined in the opposite direction, with respect to the axial direction, to lateral grooves provided in an axially adjacent block row.
Abstract:
A construction vehicle tire, in which a temperature rise at the tread portion is suppressed by enhancing the heat radiation property at the tire center portion (C). Lug grooves (22) are arranged in the tread shoulder regions (S) on both sides in the tire width direction. The tire center portion (C) is formed with narrow grooves (24) extending substantially in the tire width direction (V) and having both ends terminating within the tread. A deep equatorial groove (26) extends in the tire circumferential direction on the tire equatorial plane (CL), and has a maximum depth within the range of from 70% to 110% of the depth of the lug grooves (22), so as to efficiently cool the bottom region (26B) of the deep equatorial groove (26) at high temperature.
Abstract:
An off-road tire for motorcycle comprises a tread portion provided with a plurality of blocks including an axially outmost shoulder block, a pair of sidewall portions, and a pair of bead portions, the shoulder block comprising a tread face with an axially outer edge corresponding to a tread edge and a lateral face extending from the tread edge to an radially inner edge located on the sidewall portion, the lateral face with a swelling portion swelling axially outside of the tire than a reference line which connects the tread edge and the radially inner edge, in a cross section including a tire axis, and the radial height of the radially inner edge of the lateral face from the bead base line being in a range of from 30 to 50% of the tire section height.
Abstract:
Disclosed is a pneumatic tire for motorcycle wherein edge effect can be achieved without changing the design of block pattern, and stability of steering such as grip, feeling of grounding, or controllability of slip is enhanced. When a block having a recess in which a protrusion is formed on the bottom is provided in a tread, edge component increases correspondingly as compared with a block provided only with a recess (having no protrusion), and thereby traction can be enhanced. Since it is not required to increase the hardness of rubber of the read nor to enlarge the block size, feeling of grounding is ensured and controllability of slip can be ensured in a muddy place or on a soft road surface.
Abstract:
It aims to provide a heavy duty pneumatic tire with block patterns and capable of improving deflected wear resisting performances without sacrificing wet grip performances or on-snow performances and that can particularly be favorably used for all seasons. The present invention comprises block patterns employing at least three types of blocks 4 comprised of central blocks 4C delimited by the central longitudinal groove 2M, the intermediate longitudinal grooves 2M, and the central lateral grooves 3C, intermediate blocks 4M delimited by the intermediate longitudinal grooves 2M, the outer longitudinal grooves 2S and the intermediate lateral grooves 3M, and outer blocks 4S that are delimited by outer longitudinal grooves 2S, outer lateral grooves 3S that extend from this outer longitudinal grooves 2S to the tread ends E, and wherein longitudinal length ratios (L4/W4) of blocks 4, groove width ratios of longitudinal grooves and lateral grooves (w2/w3), maximum widths of blocks, minimum widths of blocks and ratios thereof (W4max/W4min), and circumferential edge components and tire axial edge components and ratios thereof (EC/EL) at respective stages of wear are defined to be within specified ranges.