Abstract:
Provided is a pneumatic tire which is provided with a turbulent flow generation projection for generating a turbulent flow at least in a portion of a surface of the tire and has an outer diameter of not less than 2 m The turbulent flow generation projection extends linearly or curvilinearly along a tire radial direction. A relationship of h=√{1/(V/R)}×coefficient κ is satisfied where “h” is a projection height (mm) from the surface of the tire to a most protruded position of the turbulent flow generation projection, “V” is a speed of a vehicle (km/h), “R” is a tire outer diameter (m), provided that coefficient κ=27.0 to 29.5.
Abstract:
A construction vehicle tire, in which a temperature rise at the tread portion is suppressed by enhancing the heat radiation property at the tire center portion (C). Lug grooves (22) are arranged in the tread shoulder regions (S) on both sides in the tire width direction. The tire center portion (C) is formed with narrow grooves (24) extending substantially in the tire width direction (V) and having both ends terminating within the tread. A deep equatorial groove (26) extends in the tire circumferential direction on the tire equatorial plane (CL), and has a maximum depth within the range of from 70% to 110% of the depth of the lug grooves (22), so as to efficiently cool the bottom region (26B) of the deep equatorial groove (26) at high temperature.
Abstract:
A construction vehicle tire, in which a temperature rise at the tread portion is suppressed by enhancing the heat radiation property at the tire center portion (C). Lug grooves (22) are arranged in the tread shoulder regions (S) on both sides in the tire width direction. The tire center portion (C) is formed with narrow grooves (24) extending substantially in the tire width direction (V) and having both ends terminating within the tread. A deep equatorial groove (26) extends in the tire circumferential direction on the tire equatorial plane (CL), and has a maximum depth within the range of from 70% to 110% of the depth of the lug grooves (22), so as to efficiently cool the bottom region (26B) of the deep equatorial groove (26) at high temperature.
Abstract:
Provided herein is a non-destructive testing method capable of diagnosing a condition of an object to be tested using a single-pulse ultrasonic wave signal. An attenuation waveform of the single-pulse ultrasonic wave signal received by a receiving section 3 is wavelet transformed by a wavelet transform section 6 to obtain an envelope line A(t) and a phase φ(t) of the attenuation waveform. A temporal change computing section 7 approximates the attenuation waveform by an approximation equation available for computation, using the envelope line A(t) and the phase φ(t) of the attenuation waveform inputted from the wavelet transform section 6, and obtains the temporal change of instantaneous frequency of the attenuation waveform. A diagnosing section 8 diagnoses a condition of the object to be tested, based on the temporal change of the instantaneous frequency computed by the temporal change computing section 7.
Abstract:
Disclosed is a detergent composition for hard surface, containing (A) a monoalkyl glyceryl ether whose alkyl group has 3 to 8 carbon atoms, (B) a specific compound represented by the formula (1), (C) an amine, (D) a polyvalent carboxylic acid having a molecular weight of 40 to 400 and/or a salt thereof, (E) a surfactant provided that (A) and (B) are excluded from (E), and water, wherein the mass ratio of (A)/(B), the content of (A)+(B), the mass ratio of (C)/(D), and the content of (C)+(D) are respectively in a specific range, and the pH of the detergent composition at 20° C. is 9.5 to 11.5.
Abstract:
A thin type ink jet cartridge consists of a passageway for holding ink, a thin type ink holder made of transparent material for accommodating the passageway, a graded scale put on the thin type of ink holder to quantitatively check the volume of the ink held in the passageway, ribs for structurally reinforcing the thin type ink holder, nozzles for discharging the ink held in the passageway at a recording paper, a shutter for covering the shutter when the ink is not discharged from the nozzles, a protecting plate for protecting the recording paper from contact with the nozzles by surrounding the nozzles positioned at a concave portion surrounded by the protecting plate.
Abstract:
In an application, an instruction to execute a function is set in a Print Ticket and a printer driver is called via an OS. In the printer driver, the Print Ticket is obtained from the OS, and the function is executed based on the instruction set in the obtained Print Ticket.
Abstract:
Electric power supplying equipment and an electric power receiving device include a primary self resonant coil and a secondary self resonant coil, respectively, resonating through an electromagnetic field to allow the electric power supplying equipment to supply the electric power receiving device with electric power in a non-contact manner. A control device controls a high frequency electric power supply device to control supplying electric power from the primary self resonant coil to the secondary self resonant coil. The control device estimates a distance between the primary self resonant coil and the secondary self resonant coil from an S-parameter S11 varying with the distance between the primary self resonant coil and the secondary self resonant coil, and controls supplying electric power, based on that estimated distance.
Abstract:
Disclosed is a detergent composition for hard surface, containing (A) a monoalkyl glyceryl ether whose alkyl group has 3 to 8 carbon atoms, (B) a specific compound represented by the formula (1), (C) an amine, (D) a polyvalent carboxylic acid having a molecular weight of 40 to 400 and/or a salt thereof, (E) a surfactant provided that (A) and (B) are excluded from (E), and water, wherein the mass ratio of (A)/(B), the content of (A)+(B), the mass ratio of (C)/(D), and the content of (C)+(D) are respectively in a specific range, and the pH of the detergent composition at 20° C. is 9.5 to 11.5.
Abstract:
In a pneumatic tire of the present invention, a tread reinforcing rubber layer composed of a rubber having larger tensile modulus of elasticity than that of a rubber composing the tread rubber layer and is less stretchable is provided in a thickness direction central area of a tread rubber layer. Because the tread reinforcing rubber layer diminishes the amount of lateral expansion and the amount of vertical compressive deformation when the tread rubber layer contacts the ground, generation of heat in the tread rubber layer can be suppressed. Therefore, in the present invention, the unique tread structure reliably suppresses heat-generation and the rubber of the tread rubber layer exhibits excellent tire wear resistance. As a result, suppression of heat-generation and high tire resistance can readily be achieved simultaneously.