Abstract:
In a method and system for decoding a differential M-ary phase or quadrature amplitude modulated signal, the incoming signal is decoded according to a plurality of different decoding rules, wherein said plurality of decoding rules correspond to different values of a resulting frequency difference or mismatch between a signal frequency and a local oscillator reference frequency. The invention allows to increase a tolerance window for the maximal allowable frequency offset, and thus helps to speed up an initial locking process or to allow for equipment which has a lower tuning granularity.
Abstract:
In a network terminal (ONU) of an optical network near end crosstalk (NEC) is compensated by a digital generated cancellation signal. To establish a connection with another terminal (OLT) signals avoiding NEC are transmitted and the compensation is performed while the power of the transmitted signal is increased in steps.
Abstract:
An Optical Line Terminal (OLT) transmitting device is provided, the device comprising an IQ modulator having a first input, a second input and an output, a first digital analog converter (DAC) directly coupled to the first input of the IQ modulator, a second digital analog converter (DAC) directly coupled to the second input of the IQ modulator; an optical filter directly coupled to the output of the IQ modulator.
Abstract:
A received optical signal is coherently demodulated and converted into electrical complex samples (p(n); (px(n), py(n)), which are dispersion compensated in a compensation filter (11). A control circuit (12, 13, 14, 15) calculates comparison values (R1, R2) from corrected samples q(n) and an estimated error value (εMIN).A plurality of compensation function (T(M)) is applied according to a predetermined dispersion (CD) range and after a second iteration is the compensation filter (11) set to an optimum compensation function (T(M)).
Abstract:
A method and devices for processing data in an optical network are provided, wherein a centralized component is connected to several decentralized components; wherein first data is conveyed from the centralized component to at least two decentralized components, wherein at least two decentralized components share an optical resource; and wherein second data is conveyed from the decentralized component to the decentralized component via at least one separate optical resource. Furthermore, a communication system is suggested comprising said device.
Abstract:
A method and a device for adjusting a laser in an optical network. At least one alive message is transmitted from a first optical component towards a second optical component. A confirmation message is transmitted from the second optical component to the first optical component determining the wavelength of the laser to be used based on the alive message received by the second optical component. Furthermore, an optical communication system is provided with an optical element.
Abstract:
A method for controlling a variation in gain in an optical amplifier stage and an optical amplifier. The optical amplifier stage includes a pumping device for providing pumping power and a control unit for determining a change in an input power of the optical amplifier. The method includes the steps of determining a change in an input power of the optical amplifier, adjusting a pumping power of the pumping device to a first power level for a predetermined period of time and adjusting the pumping power of the pumping device to a second power level. The second power level is able to drive the amplifier gain to a predetermined gain value after the change in the input power occurred.
Abstract:
A method for processing data in an optical network element are provided, wherein the optical network element comprises a local oscillator operating at a first frequency; wherein an incoming data stream is received at a second frequency; wherein the incoming data steam is processed using the first frequency; wherein a first pattern is searched in the incoming data stream; wherein a second pattern is searched in the incoming data stream; and wherein the first pattern corresponds to the first frequency being in the spectrum on one side of the second frequency and the second pattern corresponds to the first frequency being in the spectrum on the other side of the second frequency. Also, a corresponding optical network element and a communication system comprising at least one such optical network element are suggested.
Abstract:
An optical component contains a tunable laser. The tunable laser provides an optical local oscillator signal, and the tunable laser is directly modulated to provide a modulated optical data signal. In this manner we have optimization of the channel wavelength and obtain an optimized electrical and optical bandwidth utilization. Furthermore, a method for data processing is suggested.
Abstract:
A method for data processing of an optical network element is provided, wherein a configuration information is received at the optical network element and a light signal is adjusted to a wavelength or wavelength range indicated by said configuration information; wherein an incoming optical signal is demodulated via the light signal and mixed as an electrical demodulated signal with a signal of an oscillator; wherein the signal of the oscillator is tuned to improve a reception of the incoming signal at the optical network element; and wherein the light signal is used for upstream modulation to provide a modulated optical upstream signal. Furthermore, an according device and a communication system are suggested including at least one such device.