Abstract:
A first network switching device communicates to and from a second network switching device different in at least one of a device configuration and a device performance. The network switching device has at least one of plurality of network interface units and packet forwarding unit which is a power state control subject. A power state control unit of the first network switching device transmits, in order to change the power state of the second network switching device, a forwarding performance notification including the forwarding performance of a power state control subject after the change to the second network switching device.
Abstract:
A history management unit within a discard determination unit manages transmission and reception packets related to a resource to be protected for each of users, and records communication history information for users high in use frequency through stateful measurement. A priority determination unit determines the priority of a communication on a per received packet basis on the basis of communication history information. A load determination unit determines a load level of the resource to be protected, and combines the load level with the priority of the communication determined on the per received packet basis. A discard rate determination unit and a packet discard unit implement forwarding processing, determine the priority of the communication on the per user basis, and discard communications low in the priority at a high ratio.
Abstract:
Network repeaters which each implement a redundant switching function previously grasp connection states of ports of a network system by using an inquiry frame and an exchange frame. At the time when a line is broken, when actively confirming a state of a port connected to a port in which a line is broken via a downstream device, the network repeaters each grasp that which portion of the line is broken and determine whether a switchover is required. Through the process, the network repeaters each prevent a useless switchover such as switching-back immediately after the switchover, and at the same time since a mechanism of waiting for a given length of times is not required, they each perform a fast switchover.
Abstract:
A first network device includes: a forwarding controller configured to forward received data; and a fault detector configured to detect occurrence of a failure in a remote second relay node. The forwarding controller includes: a forwarding unit configured to forward the received data; and a modifier configured to modify the received data for detection of the occurrence of a failure in the second relay node. The modifier includes (i) a flag option marker configured to attach a flag to data; (ii) a sequence adding unit configured to add a protocol specific number to a sequence number; and (iii) a sequence subtracting unit configured to subtract the protocol specific number from an acknowledgement number. The fault detector detects the occurrence of a failure in the remote second relay node, based on at least one of the flag and the acknowledgement number.
Abstract:
To detect a failure in each processor core appropriately. It is provided a network apparatus for transferring a packet, comprising: a control unit; and a network processor including a plurality of processor cores, each configured to perform a process of transferring a packet input over a network. The control unit being configured to: transmit a packet to the network processor; acquire a packet processing status of each of the plurality of processor cores; and monitor a status of the each of the plurality of processor cores based on the acquired packet processing status.
Abstract:
A packet relay device has a packet receiving unit, a switch, a packet sending unit, an associative memory, and a packet search unit. The packet search unit has action registers which hold information specifying an action to be executed, holds address range information including consecutive address ranges of the associative memory and the action registers in association with each other, and registers a plurality of flow entries at a plurality of addresses in the same address range. The flow entries have conditions identifying the flows associated with the same action. The device inputs header information of the packets into the associative memory, determines the action to be executed in accordance with information read out from the action register corresponding to the address range including an address output from the associative memory, and executes the determined action.
Abstract:
A communication apparatus including: a plurality of physical ports to be coupled to different terminals via a network; a plurality of authentication processing units configured to execute an authentication process; and a controller configured to determine which one of the physical ports on which a packet was received from a terminal, to specify a preset authentication process corresponding to the determined physical port on which a packet was received, and to distribute the specified authentication process of the packet from the terminal to an authentication processing unit for executing.
Abstract:
It is provided an authentication method for realizing a network authentication function for an authentication system, the authentication system including an authentication server for authenticating a terminal used by a user, and a switch for mediating an authentication sequence between the terminal and the authentication server. The authentication method includes steps of: providing, by the switch, identification information for identifying the switch to the authentication server in the authentication sequence; authenticating, by the authentication server, an authentication request transmitted from the terminal; transmitting, by the authentication server, an authentication result of the authentication to the switch based on the provided identification information on the switch; and authenticating, by the switch, access from the terminal based on the authentication result received from the authentication server.
Abstract:
It is provided a communication apparatus for transferring frames, comprising: a controller for controlling operation of the communication apparatus; an interface for inputting/outputting the frames; and a plurality of frame processing parts for processing the input frames. The plurality of frame processing parts each includes: a plurality of storage areas for recording statistics of the frames to be processed; an identifier assigning part for determining, for each of the input frames, one storage area in which the statistics are to be recorded out of the plurality of storage areas, and assigning identification for identifying the determined one storage area to the each of the input frames; and a statistical processing part for updating the statistics that are recorded in the one storage area identified by the identification, by using a result of statistical processing of the frame.
Abstract:
A network relay apparatus includes: a clock generation circuit, a processing circuit, a load detector and a clock cutoff circuit. The clock generation circuit is configured to generate a clock signal having periodical clock pulses. The processing circuit is configured to operate in synchronism with the clock pulses, in order to process data that is to be relayed by the network relay apparatus. The load detector is configured to detect a load of processing by the processing circuit. The clock cutoff circuit is configured to cut off supply of the clock pulses from the clock generation circuit to the processing circuit in order to partially eliminate the clock pulses at a rate corresponding to the load detected by the load detector and to provide the clock signal having the partially eliminated clock pulses to the processing circuit.