Abstract:
Systems and methods for measuring a topography of an optical tissue surface of an eye are provided by combining measured elevations of the surface with a priori information of the surface to provide an estimate of mean and covariance of post-measurement orthogonal polynomial sequence amplitudes associated with the surface, determining a variance of elevation of the surface from the estimate, and constructing the topography from the estimate of mean and covariance of post-measurement amplitudes based on a comparison of the variance of elevation of the surface with a pre-determined threshold. The a priori information includes an estimate of mean and covariance of pre-measurement orthogonal polynomial sequence amplitudes associated with the surface.
Abstract:
A fiducial is generated on an internal anatomical structure of the eye of a patient with a surgical laser. A toric artificial intraocular lens (IOL) is positioned so that a marker of the toric IOL is in a predetermined positional relationship relative to the fiducial. This positioning aligns the toric IOL with the astigmatic or other axis of the eye. The toric IOL is then implanted in the eye of the patient with high accuracy.
Abstract:
An ophthalmic surgical laser system and method for forming a lenticule in a subject's eye using “fast-scan-slow-sweep” scanning scheme. A high frequency scanner forms a fast scan line, which is placed tangential to a parallel of latitude of the surface of the lenticule and then then moved in a slow sweep trajectory along a meridian of longitude of the surface of the lenticule in one sweep. Multiple sweeps are performed along different meridians to form the entire lenticule surface, with the orientation of the scan line rotated between successive sweeps. To generate tissue bridge free incisions without leaving laser-induced marks in the eye, a laser pulse energy between 40 nJ to 70 nJ is used, and the sweeping speed is controlled such that the scan line step (the distance between the centers of consecutive scan lines) is between 1.7 μm and 2.3 μm.
Abstract:
A fiducial is generated on an internal anatomical structure of the eye of a patient with a surgical laser. A toric artificial intraocular lens (IOL) is positioned so that a marker of the toric IOL is in a predetermined positional relationship relative to the fiducial. This positioning aligns the toric IOL with the astigmatic or other axis of the eye. The toric IOL is then implanted in the eye of the patient with high accuracy.
Abstract:
An ophthalmic laser system uses a non-confocal configuration to determine a laser beam focus position relative to the patient interface (PI) surface. The system includes a light intensity detector with no confocal lens or pinhole between the detector and the objective lens. When the objective focuses the light to a target focus point inside the PI lens at a particular offset from its distal surface, the light signal at the detector peaks. The offset value is determined by fixed system parameters, and can also be empirically determined by directly measuring the PI lens surface by observing the effect of plasma formation at the glass surface. During ophthalmic procedures, the laser focus is first scanned insider the PI lens, and the target focus point location is determined from the peak of the detector signal. The known offset value is then added to obtain the location of the PI lens surface.
Abstract:
The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.
Abstract:
A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the system includes a video camera with a tunable lens before it to image the entire length of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.
Abstract:
Apparatus to treat an eye comprises an annular retention structure to couple to an anterior surface of the eye. The retention structure is coupled to a suction line to couple the retention structure to the eye with suction. A coupling sensor is coupled to the retention structure or the suction line to determine coupling of the retention structure to the eye. A fluid collecting container can be coupled to the retention structure to receive and collect liquid or viscous material from the retention structure. A fluid stop comprising a porous structure can be coupled to an outlet of the fluid collecting container to inhibit passage of the liquid or viscous material when the container has received an amount of the liquid or viscous material. The coupling sensor can be coupled upstream of the porous structure to provide a rapid measurement of the coupling of the retention structure to the eye.
Abstract:
A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
Abstract:
In an ophthalmic laser procedure, a lenticule is formed in the cornea and extracted from the cornea to accomplish vision correction. The ophthalmic laser system is used to form top and bottom lenticule incisions which intersect each other to form an isolated volume of corneal tissue in between. The volume of tissue includes a lenticular portion having a circular or oval shape and a side tab that protrudes from the peripheral of the lenticular portion. The side tab has a radial dimension between 0.5 and 5 mm and a width between 0.5 and 3 mm in. An entry cut is further formed from the anterior corneal surface to the top or bottom lenticule incisions to provide access to the lenticule. During extraction, the surgeon uses the surgical tool to grab the side tab to extract the lenticule.