Abstract:
The disclosed embodiments provide a component for a portable electronic device. The component includes a structural frame within the portable electronic device and an amorphous diamond-like carbon (DLC) coating deposited on the surfaces and the edges of the structural frame, wherein the amorphous DLC coating increases a thermal conductivity of the structural frame.
Abstract:
An electronic device may have a display. The display may have an active region in which display pixels are used to display images. The display may have one or more openings and may be mounted in a housing associated with the electronic device. An electronic component may be mounted in alignment with the openings in the display. The electronic component may include a camera, a light sensor, a light-based proximity sensor, status indicator lights, a light-based touch sensor array, a secondary display that has display pixels that may be viewed through the openings, antenna structures, a speaker, a microphone, or other acoustic, electromagnetic, or light-based component. One or more openings in the display may form a window through which a user of the device may view an external object. Display pixels in the window region may be used in forming a heads-up display.
Abstract:
A display assembly includes at least a protective cover layer, a display stack that includes a plurality of display components arranged in a plurality of interconnected layers, the display stack providing an imaging service, and a flat support chassis arranged to provide support for the display stack. In the described embodiment, the display stack is positioned between the protective cover layer and the flat support chassis. The display assembly can be disposed within a housing with sides sloping inwards where a portion the display assembly is proximate to the inward sloping sides. To allow the display assembly to fit closer to the edges of the housing, material can be removed from the flat support chassis. For example, edges of the flat support chassis can be chamfered.
Abstract:
Systems and methods for routing cables in an electronic device are provided. In some embodiments, the electronic device may include a touch sensor having a number of traces, a display component, and a mechanical button, each of which may be coupled to a circuit board via a single flexible circuit cable. This may save valuable space within the electronic device.
Abstract:
An assembly method suitable for assembling a portable electronic device having a housing with an undercut portion is disclosed. The method includes aligning a non-display portion of a display assembly with the undercut portion of the housing, the display assembly comprising a display, a protective top layer covering a top side of the display portion and the non-display portion and a battery module attached to an underside of the display assembly, electrically connecting the battery to a circuit previously installed in the housing, angling the display assembly in relation to a front opening of the housing in a tilted configuration such that the non-display portion is partially inserted into the undercut portion of the housing, and in the tilted configuration, performing a pre-install functional test on the display and fully inserting the display assembly into the housing only when the pre-install functional test is successfully completed.
Abstract:
Thermal sensors are disposed with OLEDs across a display of an electronic device to measure temperatures across the display surface. Thermal sensors may be used to create a temperature map across the display surface due to both the ambient environment and the internal environment of the electronic device. The thermal sensors may be disposed in the OLED layer, on a separate layer, or both. Thermal sensors may be disposed in a substantially 1:1 ratio with OLEDs or with zones of OLEDs. Both the temperature history and usage history for OLEDs may be recorded and processed to determine the age of each OLED. Controllers may adjust the driving strength of OLEDs or adjust the operation of components within the electronic device to compensate for aging or temperature based on the temperature map and age determination. Controllers may move static images from one part of the display to another less-aged part.
Abstract:
This invention is directed to several mechanical features of an electronic device. The electronic device may include a spring for simultaneously grounding several components. The electronic device may include several interlocking fences for protecting electronic device components from RF radiation. The electronic device may include an antenna assembly that includes distinct components for functional and aesthetic purposes. The electronic device may include a window for permitting RF transmissions. The electronic device may include a metal frame for stiffening the electronic device. The electronic device may include a bezel used for aesthetic purposes and to support numerous electronic device components. The electronic device may include a flexible housing operative to elastically deform to assemble the electronic device. The electronic device may include an unsupported button.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer by laser drilling. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. Components such as flexible printed circuits, integrated circuits, connectors, and other circuitry may be mounted to the contacts on the rear surface of the display.
Abstract:
An electronic device may include housing structures, electronic components, and other structures. A gap may be formed between the structures. A membrane structure may be used to bridge the gap to form and environmental seal and electrical pathway between the structures. The membrane structure may be deployed using a temporary biasing member or may be installed by forming an inflatable structure. The inflatable structure may include an elastomeric balloon that may be pressurized. Adhesive such as conductive adhesive may be used in attaching the membrane structure to the structures in the electronic device. An inflatable structure may be depressurized following installation in an electronic device to minimize residual forces.