Abstract:
A cutting tool (10) for removing metal tubular members held in stationary position downhole from a well bore and adapted to be inserted within a well. The cutting tool (10) includes a plurality of elongate blades (32,34) on the cylindrical body (22) of the cutting tool (10) which extend below the bottom of the tool body (22). Cutting elements (42) of a predetermined size and shape are arranged in a symmetrical predetermined pattern on the lower portion of each blade (32,34) in a plurality of predetermined transversely extending rows below the tool body (22). The cutting elements (42) in adjacent transverse rows for each blade (32) are staggered horizontally and have different concentric cutting paths. Preferably, the cutting elements (42) in corresponding transverse rows on adjacent blades (32,34) are staggered and have different concentric cutting paths. Each cutting element (42) has a groove (42F) for receiving and directing forwardly the extending end of a metal shaving (S) to facilitate breaking thereof from the upper end of the tubular member (14) being cut away. A high strength tungsten carbide alloy material (41) is secured to the trailing surface of the blades (32,34) to reinforce the blades in addition to assisting the cutting action.
Abstract:
In one aspect, a method of method of performing a wellbore operation is disclosed that in one embodiment may include: providing a device that includes a non-explosive energetic material configured to disintegrate when subjected to a selected energy; placing the device at a selected location in the wellbore to perform a selected function; and subjecting the device to the selected energy to disintegrate the device in the wellbore after the device has performed the selected function. In another aspect an apparatus for use in a wellbore is disclosed that in one embodiment may include a device placed in the wellbore at a selected location, wherein the device includes a non-explosive energetic material configured to disintegrate when subjected to a selected energy, and a source of the selected energy configured to subject the device to the selected energy in the wellbore to disintegrate the device.
Abstract:
A subterranean debris catcher swirls the incoming debris laden stream by putting grooves or spiral projections on the inside of the inlet pipe. The solids come out of openings in the side of the inlet pipe or the solids can exit near the top either directly into the enclosed solids holding volume as the liquid exits straight out or the solids can be discharged out the end of the inlet pipe into the bigger open space defined by the housing. In the latter case the inside housing wall can have a screen or vanes that slow down the solid particles as the fluid continues to a housing exit and eventually to an exit screen before being discharged to either go to the surface or recirculate back along the outside of the tool to the inlet pipe while picking up additional debris.
Abstract:
Disclosed herein is a downhole fish-imaging system. The fish-imaging system includes, a fish-imaging device positionable downhole near the fish, and a processor. The fish-imaging device has at least one shape changeable portion with a plurality of sensors therein for monitoring the shape of the at least one shape changeable portion, a shape of the at least one shape changeable portion is influenced by a shape of the fish. The processor is in operable communication with the fish-imaging device and is coupled to a wired pipe for transmitting data therealong from the sensors.
Abstract:
A subterranean screen system features openings in a base pipe and sleeve sections of a porous material that preferably swells in the borehole to span an annular space around the base pipe. Retainers are mounted to the base pipe in a desired location and mechanically fixated using an internal grip system actuated through the wall of the retainer. A wedging action of slip segments is initiated by an angularly advancing assembly through the wall of the retainer. The retainer can have end rings extending past one or both ends over which the screen sleeve extends. Flat or ridges on the exterior of the retainer or end rings make assembly easier with hand tools to allow for rapid field assembly, if needed. Filtration occurs through the sleeves that abut the borehole wall and into the base pipe openings and to the surface.
Abstract:
An apparatus for verifying cement arrival at a target location includes a liner. A sensory structure radially outwardly disposed of the liner at a target arrival location of cement from a cementing operation. The sensory structure configured to sense arrival of cement. A seal configuration automatically responsive to the sensed arrival of cement. Also included is a method for addressing micro annulus formation in a downhole cementing operation.
Abstract:
An abrasive slurry tool, the tool being attachable to a running string, the tool including a high-pressure assembly, the assembly including a nozzle assembly; and a low-pressure assembly in abrasive fluid communication with the high-pressure assembly, the low-pressure assembly comprising a low pressure holding tank configured to carry recharge abrasive fluid with the tool and method.
Abstract:
A cutting/milling tool includes a tool body; a cutting end of the tool body; a first plurality of cutting elements having a substantially identical shape disposed at the cutting end of the tool body; and a second plurality of cutting elements having a different shape than the first plurality of cutting elements, the second plurality of cutting elements being substantially identical in shape to each other, the second plurality of cutting elements being interspersed with the first plurality of cutting elements at the cutting end of the tool body.
Abstract:
A subterranean screen system features openings in a base pipe and sleeve sections of a porous material that preferably swells in the borehole to span an annular space around the base pipe. Retainers are mounted to the base pipe in a desired location and mechanically fixated using an internal grip system actuated through the wall of the retainer. A wedging action of slip segments is initiated by an angularly advancing assembly through the wall of the retainer. The retainer can have end rings extending past one or both ends over which the screen sleeve extends. Flat or ridges on the exterior of the retainer or end rings make assembly easier with hand tools to allow for rapid field assembly, if needed. Filtration occurs through the sleeves that abut the borehole wall and into the base pipe openings and to the surface.
Abstract:
A downhole tubular scraper is run in on slickline with an on board power supply. It features counter-rotating scrapers without an anchor in one embodiment or an anchor with single rotating scrapers. The scraper is selectively operated to conserve power in the power supply. A drive system uses a single driver to obtain counter-rotating motion in the scrapers.