Abstract:
Photoresist monomers, photoresist polymers prepared thereof, and photoresist compositions using the polymer are disclosed. More specifically, photoresist polymers comprising maleimide monomer represented by Formula 1, and a composition comprising the polymer thereof are disclosed. The photoresist composition has excellent etching resistance, heat resistance and adhesiveness, and can be developed in an aqueous tetramethylammonium hydroxide (TMAH) solution. As the composition has low light absorbance at 193 nm and 157 nm wavelength, and it is suitable for a process using ultraviolet light source such as VUV (157 nm) wherein, X1, X2, R1, R2 and R3 are defined in the specification.
Abstract:
The present invention provides an additive for a photoresist composition for a resist flow process. A compound of following Formula 1 having low glass transition temperature is added to a photoresist composition containing a polymer which is not suitable for the resist flow process due to its high glass transition temperature, thus improving a flow property of the photoresist composition. As a result, the photoresist composition comprising an additive of Formula 1 can be used for the resist flow process. wherein, A, B, R and R′ are as defined in the specification of the invention.
Abstract:
Photoresist additives for preventing the acid generated in the exposed area during the course of a photolithography process from being diffused to the unexposed area, photoresist compositions containing the same, and a process for forming a photoresist pattern using the same. Photoresist compositions comprising the disclosed additive can prevent acid diffusion effectively even if the additive is used in low concentrations, thereby improving LER, resulting in excellent profiles and lowering optimum irradiation energies. wherein, R1, R2, R3, R4 and k are as defined herein.
Abstract:
A chemical amplification photoresist monomer, a photoresist polymer prepared thereof, and a photoresist composition using the polymer. More specifically, a chemical amplification photoresist polymer comprising a fluorine-containing monomer represented by Chemical Formula 1, and a composition comprising the polymer. The photoresist composition has excellent etching resistance, heat resistance and adhesiveness, and is developable in aqueous tetramethylammonium hydroxide (TMAH) solution. As the composition has low light absorbance at 193 nm and 157 nm wavelength, it is very useful for forming ultramicro pattern in the process using a light source of far ultraviolet, especially of VUV (157 nm). In the Formula, R1, R2, R3 and R4 is defined in the specification.
Abstract:
Photoresist monomers, photoresist polymers prepared therefrom, and photoresist compositions using the polymers are disclosed. More specifically, photoresist polymers comprising a photoresist monomer containing fluorine-substituted benzylcarboxylate represented by Formula 1, and a composition comprising the polymer are disclosed. The photoresist composition has excellent etching resistance, heat resistance and adhesiveness, and can be developed in aqueous tetramethylammonium hydroxide (TMAH) solution. And, the present photoresist composition is suitable to form a fine pattern using deep ultraviolet light source such as VUV (157 nm), since the composition has low light absorbance at 193 nm and 157 nm wavelength. wherein, X1, X2, R1, l and m are defined in the specification.
Abstract:
Photoresist compositions which are useful in a resist flow process are disclosed. A process for forming a contact hole pattern using the disclosed photoresist compositions is also disclosed. The disclosed photoresist resin includes a mixture of two or more polymers. Preferably, a mixture of a first copolymer and a second copolymer are cross-linked, and thus it prevents a contact hole from being collapsed due to over flow which is typically observed during a conventional resist flow process. In addition, the disclosed photoresist compositions allow formation of uniform sized patterns.
Abstract:
Photoresist polymers having nitro groups (—NO2), and photoresist compositions containing the same. A photoresist pattern having excellent endurance, etching resistance, reproducibility and resolution can be formed by the use of the photoresist copolymer comprising polymerization repeating units represented by Chemical Formula 1a or 1b: wherein, R1, a, b, c, d, e, f, g and h is defined in the specification. Having nitro groups in the polymer, the photoresist polymer results in a low absorbance in the range of 157 nm wavelength, so that it is extremely useful for a photolithography process using, in particular, VUV light source.
Abstract:
A compound of Formula 10, an organic anti-reflective polymer having the structure of Formula 1 synthesized from the compound of Formula 1 and a preparation method thereof. An anti-reflective coating composition including the above organic anti-reflective polymer, as well as a preparation method of an anti-reflective coating. The anti-reflective coating comprising the disclosed polymer eliminates standing waves caused by the optical properties of lower layers on the wafer and by the changes in the thickness of the photoresist, prevents back reflection and also solves the problem of CD alteration cause by the diffracted and reflected light from such lower layers. Such advantages enable the formation of stable ultrafine patterns suitable for 64M, 256M, 1G, 4G, and 16G DRAM semiconductor devices and an increase of the production yields. Further, it is also possible to control the k value
Abstract:
An organic anti-reflective polymer having the following Formula 1, its preparation method, an anti-reflective coating composition comprising the said organic anti-reflective polymer and a preparation method of an anti-reflective coating made therefrom. The anti-reflective coating comprising the disclosed polymer eliminates standing waves caused by the optical properties of lower layers on the wafer and by the thickness changes of the photoresist, prevents back reflection and CD alteration caused by the diffracted and reflected light from such lower layers. Such advantages enable the formation of stable ultrafine patterns suitable for 64M, 256M, 1G, 4G, and 16G DRAM semiconductor devices and improve the production yields. Further, it is also possible to control the k value and the increased hydrophobicity facilitates EBR (Edge Bead Removal).
Abstract:
The present invention provides photoresist polymers, processes for producing the same, photoresist compositions comprising such polymers, and processes for producing a photoresist pattern using such photoresist compositions. In particular, photoresist polymers of the present invention comprise a moiety of the Formula: where R1, R2, R3 and R4 are those defined herein. Photoresist polymers of the present invention have a relatively high etching resistance, and therefore are useful in thin resist processes and bilayer photoresist processes. Moreover, photoresist polymers of the present invention have a high contrast ratio between the exposed region and the non-exposed region.