Abstract:
A door assembly providing an airtight seal for a chamber. The door assembly includes a link assembly that allows a door to move inward toward a gasket sealing an opening into the chamber.
Abstract:
A portable cart for use in a washing chamber for organizing and supporting articles to be washed. The cart is comprised of a generally rectangular, open frame structure comprised of a plurality of elongated structural members. A plurality of the structural members have apertures formed therein. Two planar panels are attached to the frame. The panels are spaced apart and have a plurality of apertures formed therethrough. A plurality of elongated rods are attached to and extend between the panels and are attached to the apertures. The rods define article support areas within the frame structure. One or more support elements are mounted through the apertures in the structural members or the panels. The support elements are dimensioned to support articles. Coasters at one end of the frame member allow rolling movement of the frame member.
Abstract:
A method and apparatus for measuring doses of electron beams that are absorbed by an object subjected to e-beam irradiation. The absorbed dose can be continuously measured during an irradiation process, and adjustment can be made to system parameters in accordance with the measured absorbed dose.
Abstract:
An induction coil (36) generates a magnetic field which induces current in an induction vessel (28). The induction vessel is heated by the current and supplies the heat to a passage (34) within the vessel. A liquid to be vaporized, such as water or hydrogen peroxide solution, is supplied to the passage where it is converted to vapor. The vapor is supplied to a defined area, such as a chamber (14) of a steam or vapor hydrogen peroxide sterilizer (10), where items are microbially decontaminated by the vapor.
Abstract:
A portable, radiation-producing apparatus is provided that can produce highly energetic electron beam radiation and X-rays from a low voltage power source., e.g., a battery. The radiation-producing apparatus is comprised of a radiation generating device, a pulsed high voltage generator and a control system. The pulsed high voltage generator is comprised of a power source and a Tesla resonant transformer. The Tesla resonant transformer has at least one first capacitor, a primary coil, a secondary coil and at least one second capacitor. The at least one second capacitor is disposed axially within the secondary coil. The pulsed high voltage generator is connected to the radiation generating device for providing electrical energy to the radiation generating device. The control system is connected to the pulsed high voltage generator for selectively controlling the transfer of energy from the pulsed high voltage generator to the radiation generating device. The radiation-producing apparatus generates pulses of electrons and X-rays. Each pulse has a time duration of about 100 nanoseconds or less. The electrons and X-rays produced by the radiation-producing apparatus can be used to deactivate microbial contamination or irradiate various materials.
Abstract:
A system for handling mail is in the form of a modular facility (10), which is capable of being isolated from the surrounding environment. The modular facility includes an enclosure or sorting area (40) for receiving and sorting incoming mail. A decontamination system (22) receives sorted mail and decontaminates the mail with a antimicrobial gas, such as ethylene oxide. A clean room (32), isolated from the enclosure and spaced from the enclosure by the decontamination system, is used for receiving processed mail from the decontamination system and sorting the mail for distribution. A source (92) of a decontaminant gas, such as vapor hydrogen peroxide, is fluidly connected with the enclosure for supplying the decontaminant gas to the enclosure in the event that the sorting room is contaminated or suspected of being contaminated with a pathogenic biological or chemical agent.
Abstract:
A surface which carries a material which is infected with prions is cleaned with an alkaline cleaning solution to remove as much proteinaceous material as possible from the surface. The solution contains an alkaline cleaning agent which attacks prions remaining on the surface and which attacks prions removed from the surface during the cleaning step. After the cleaning step, the surface is exposed to a strong gaseous oxidant, preferably hydrogen peroxide vapor. The hydrogen peroxide or other strong oxidant attacks the prions, particularly the unclumped prion strands, deactivating the prions.
Abstract:
A cleaning unit (A) includes a movable cart (20) which carries a cleaning system for cleaning baked-on residues from walls (10) of a sterilizer chamber (12). Alkaline and acid cleaning solutions (180, 182), for removing organic and inorganic residues, respectively, from the chamber, are stored in a multi-compartment container carried by the cart and having two storage compartments (52, 54). The alkaline and acid solutions are sequentially sprayed over the chamber walls and returned to their respective compartments. After cleaning is complete, a wall (200) which separates the two compartments is punctured. The two cleaning fluids are thereby mixed together to form a neutral or near neutral solution which is disposable in a sanitary sewer system without further treatment.
Abstract:
In automated reprocessing system (B), a leak detection system (10) evaluates the integrity of an endoscope (A), having an internal passage (66). The leak detection system includes an interior chamber (42) which is connected to the internal passage by quick connects (18, 20). A source of compressed air (22) pressurizes the chamber and internal passage to a suitable test pressure. A pressure sensor (50) and a temperature sensor (54) detect the pressure and temperature within the chamber and hence in the endoscope passage. Pressure and temperature measurements made over time are used to determine changes in the gas volume, indicative of whether leaks are present in the endoscope. If the endoscope is determined to be free of leaks, the endoscope is washed and microbially decontaminated in the reprocessing system. During the decontamination process, the pressure within the internal passage is maintained in a range at which ingress of fluid is avoided yet the endoscope is not subjected to a potentially damaging pressure.