Abstract:
Various methods for enabling D2D connections to exchange P2P data so as to reduce traffic on a network. One example method may comprise constructing a local topology of one or more mobile terminals. The method of this embodiment may also include determining that a mobile terminal of the one or more mobile terminals has initiated a peer to peer session. The method of this embodiment may also include determining, based on the local topology, one or more mobile terminals to act as one or more seeder devices for the peer to peer session. The method of this embodiment may also include causing the local topology to be transmitted to the mobile terminal that has initiated the peer to peer session. In some example embodiments, the mobile terminal is configured to use the local topology to initiate a device to device connection for the peer to peer session.
Abstract:
A wireless device operates in a first mode in which the device can send data to and receive data from an access point. The device receives control data from the access point comprising first data indicative of a time period and second data indicative of a control parameter. The device operates in a second mode for the time period specified by the first data and on the basis of the control parameter. In the second mode, at least some circuitry of the device used for sending data and at least some circuitry of the device used for receiving data is placed in a low power state, and data to be sent to the access point is stored in a buffer of the device. After expiry of the time period, the device operates in the first mode to send the data stored in the buffer to the access point.
Abstract:
Exemplary embodiments are concerned with method of controlling transmission of a set of transmissions from a source device to at least one destination device according to a multicast transmission scheme, the set of transmissions including random linear network coded packets that are to be multicast by the source device to the destination devices. These embodiments differ from this conventional approach in that the number of packets that are encoded for multicast transmission or the rate of transmission thereof is configured using feedback from the destination devices regarding their progress in decoding a previously multicast set of transmissions.
Abstract:
An apparatus receives from a first device a first broadcast message/beacon which comprises an identifier for an enabling station, then uses the identifier to associate with the enabling station to obtain from it a list of at least one license-exempt channel (e.g., TV whitespaces). In one embodiment the apparatus can then join an ad hoc network (IBSS) with the first device and transmit a second beacon which comprises the identifier for the enabling station. If the apparatus hears multiple beacons advertising different IBSSs, it can select to join the first device's ad hoc network over the other(s) based on a service offered or the first device's network being trusted. Various examples are detailed for where in the beacon frame the identifier (e.g., SSID) might be placed. In one example the apparatus and first device are Mode I devices and the enabling station is a Mode II device under (draft) IEEE802.11af.
Abstract:
A method and apparatus are provided for facilitating the creation of an intra-system interface between systems operating in an unlicensed spectrum, such as between respective access points of first and second LTE systems that use the same radio resources within an unlicensed spectrum, such as within the TV white spaces. In the context of a method, configuration messages may be caused to be sent to first and second systems regarding creation of an intra-system interface. The method may also receive configuration message responses including address information for first and second access points of the first and second systems, respectively. The method may additionally cause a message to be sent to the first system to trigger the first system to initiate establishment of the intra-system interface with the second system.
Abstract:
A wireless backhaul link is established by sending from a mobile first access node to a second access node a priority request message requesting high priority for a link between them. The established wireless backhaul link is utilized as part of a wireless multihop connection between the second access node and at least one user device attached to the mobile first access node. In various embodiments the high priority is requested by indicating a priority class (e.g., highest priority, at least higher than any current priority, and at least as high as a highest current priority) and may also indicate how many user devices are attached and/or an amount of data waiting to be sent. A first timer may be initiated upon inactivity on the wireless backhaul link and continuous inactivity through expiry of that automatically results in a reduction of the priority class for the wireless backhaul link.
Abstract:
A coexistence central entity CCE receives deployment messages from each of a plurality of N access nodes. Each deployment message has an identifier of an access node of the plurality and an identifier of a channel in a license-exempt band. From the received deployment messages the CCE compiles and maintains a database which associates each channel with a multicast group. Each multicast group includes all of the access nodes from which was received at least one deployment message identifying a said channel corresponding thereto. When the CCE receives a multicast message from one of the access nodes identifying a given channel, it checks the database to find members of a multicast group associated with the given channel, and notifies at least some of those members of the received multicast message. In this manner the access node's multicast message is forwarded among the whole group.
Abstract:
Apparatus and method for communication are provided. The solution comprises communicating on a synchronised shared channel having a frame structure comprising symbols; receiving from a network element a given number for each frame or sub frame, and during the given number of symbol periods in the beginning of a frame or sub frame measuring interference and making a decision whether to transmit or not during the rest of the symbol periods of the frame or sub frame.
Abstract:
Apparatus and method for communication are provided. The solution comprises communicating on a synchronised shared channel having a frame structure comprising symbols; receiving from a network element a given number for each frame or sub frame, and during the given number of symbol periods in the beginning of a frame or sub frame measuring interference and making a decision whether to transmit or not during the rest of the symbol periods of the frame or sub frame.
Abstract:
The present invention proposes methods, devices and computer program products in relation to a communication module configured for communication in a carrier aggregation mode aggregating a primary and at least one secondary carrier. Scheduling information is carried in a control channel of one of the carriers, the scheduling information being associated to a respective one of said aggregated carriers and designating search spaces for payload in a payload channel of said respective aggregated carrier. Sensing is performed responsive to a sensing command added to the scheduling information associated to said at least one secondary carrier, which sensing command commands sensing to be performed on said at least one secondary carrier.