Abstract:
Provided are a MAC method and a method for transmitting data using the same in a WLAN. The MAC method includes: transmitting a bandwidth scheduling report frame for informing information on downlinks and uplinks allocated to a terminal by including the bandwidth scheduling report frame in one of the downlinks where the bandwidth scheduling report frame includes a plurality of downlinks, a plurality of uplinks, and a plurality of short uplinks and the number of the plurality of downlinks is equal to the number of the plurality of uplinks; receiving a bandwidth request frame for requesting bandwidth allocation through one of the uplinks; and allocating a bandwidth to each of the terminals by an unit of the downlink and the uplink.
Abstract:
The present invention is directed to an apparatus for symbol timing detection for a wireless communication system. According to the present invention, the samples of the output of an analog-to-digital converter are utilized prior to the completion of the automatic gain control function to detect symbol timing using autocorrelations of the samples, and a structure supporting an average window size and a delay value is provided to optimize the complexity and allow a signal demodulation of high reliability.
Abstract:
The present invention relates to a transmitting apparatus of a wireless communication system, and a method thereof. The transmitting apparatus monitors receiving of response data for data that has been transmitted to a receiving end, and sets a first parameter for counting successful receipts according to receiving on the response data. The transmitting apparatus demodulates the response data and extracts the number of demodulated data that satisfies a first set value. Subsequently, it is determined whether the first parameter satisfies a second set value and the number of demodulated data satisfies a predetermined ratio of a referential amount of packets. According to the present invention, an efficient transmission mode for a channel state can be provided with reference to an extracted number of soft-decision data from response data received at a receiving end. In addition, a transmission mode can be determined by using only response data according to the present invention.
Abstract:
The present invention relates to an orthogonal frequency division multiplexing wireless local area network (LAN) transmitting/receiving system for providing expanded service coverage, and a method thereof. According to the present invention, first OFDM modulation is performed for an even-numbered time, and second OFDM modulation is performed by changing subcarrier allocation positions of first OFDM modulated symbols for an odd-numbered time. In addition, a transmitting frame including a plurality of signal fields according to the first and second OFDM modulation is transmitted. The receiving system determines a format configuration of the received frame to determine whether a signal field is repeatedly generated in the frame. When it is determined that the signal field is not repeatedly generated, corresponding demodulation is performed. When it is determined that the signal field is repeatedly performed, the signal field is demodulated by using first bit allocation information and is demodulated by using second bit allocation information having a 1/2 value of the first bit allocation information. A data field is demodulated according to the demodulated signal field.
Abstract:
Disclosed is a link margin adaptation method using feedback information of a wireless communication system. For transmission and reception of data between two nodes of the wireless communication system, a transmission node requests a receiving node to transmit a link margin. The transmission node receives the link margin, and selects one of a white noise table or a delay spread table according to a delay spread value between the two nodes. Then, the transmission node adapts a link between the two nodes to a transmission mode and decides a transmission rate to transmit data at the decided transmission rate, thereby improving transmission capacity of the wireless communication system, obtaining the optimum link state, extending power utilization time of stations, and reducing interference between stations.
Abstract:
A clock frequency multiplying apparatus is disclosed. The apparatus includes a clock generator for generating a clock signal, a data input buffer for serially receiving a data, address, instruction, etc. when a transmission clock signal generated by the clock generator is inputted, a data shift register for grouping the data received through the data input buffer into a data packet and, in parallel, transferring the same to a memory, and a clock frequency multiplier for multiplying a transmission clock frequency generated by the clock generator and inputting the same into the data shift register for implementing a fast data transfer by multiplying a clock frequency by dividing the clock signal in an internal circuit of the DRAM into a critical path and a non-critical path by using a transmission clock signal for the critical path and the multiplied clock signal for the non-critical path and enhancing an internal data transfer ratio.
Abstract:
Disclosed is an apparatus for receiving data in a communication system, including a receiving unit configured to receive data through a multi-channel in a MIMO (multi-input multi-output) scheme; a calculating unit configured to calculate a receiving power distribution value in each antenna of a multi-antenna and in each channel of the multi-channel, correspondingly to the MIMO scheme, and to generate a receiving synchronization signal using the receiving power distribution value; and a synchronization unit configured to synchronize frames for the data receiving of the receiving unit using the receiving synchronization signal.
Abstract:
The present invention relates to a method for efficient transmission of a request frame such as an RTS/CTS frame and a response frame in response to the request frame in a multi-user based wireless communication system. The method of the present invention comprises: a process where wireless terminals transmit a response frame at their own response frame transmission time through a request frame that contains information about a plurality of wireless terminals and information about the response frame transmission time of the respective wireless terminals; a process where the respective wireless terminals transmit a response frame according to a token scheme such that the response frame is transmitted to a final access point; and a process where only a representative wireless terminal selected depending on a given wireless environment receives the response frame.
Abstract:
A method and apparatus for allocating transmission power in a transmission terminal having at least one antenna of a multi-input multi-output (MIMO) system are provided. The method includes: measuring inter-stream interference of a plurality of streams; measuring inter-user interference of a plurality of users; and determining the transmission power based on the inter-stream interference and the inter-user interference, wherein the transmission power is determined using an iterative water-filling algorithm in which the Karush-Kuhn-Tucker (KKT) system is iteratively applied to all of the plurality of streams and all of the plurality of users. According to the present invention, several receive antennas are mounted in the MIMO system, thereby making it possible to receive multiple streams. In addition, when the multiple streams are received, transmission power may be allocated to each transmission stream.
Abstract:
An apparatus of transmitting a long training field includes: a station number determination unit configured to determine at least one station to be transmitted using transmission data or channel status information; a transmission stream allocation unit configured to determine the number of transmission streams for each of the least one station determined by the station number determination unit; a long training field number calculation unit configured to calculate the number of long training fields required for each of the at least one station determined by the transmission stream allocation unit and determines the least common multiple of the number of calculated long training fields of each station; and a long training field allocation unit configured to allocate the long training fields for each station to subcarriers allocated to each station to correspond to the least common multiple of the determined long training fields.