Abstract:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. The receiver performs code-averaged equalization and chip chip-level code-specific interference over-cancellation on the received signals. This can result in a unified interference cancellation processing, and can avoid cumbersome calculations of code cross correlations that is required in symbol-level interference cancellation. A symbol-level code-averaged desired signal add-back is performed to address the over-cancellation of some desired signals.
Abstract:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive strategy is used in which after each stage of interference cancellation, impairment covariance is parametrically updated and combining weights of the receiver are adapted to reflect the updated impairment covariance.
Abstract:
A method and apparatus provide advantageous uplink power control for a set of uplink channels transmitted by a mobile terminal or other item of user equipment (UE). The proposed uplink power control maintains the total received power for the set of uplink channels at or about a target received power, while also maintaining the received signal quality for a subset of those channels—e.g., a particular one of them—at or about a target received signal quality. In an advantageous but non-limiting example embodiment, the subset comprises a fixed-rate control channel, and the set includes that control channel and a variable-rate traffic channel. Correspondingly, a base station generates first power control commands to maintain the received signal quality of the control channel at or about some quality target, and generates second power control commands to maintain the total received power (of the two channels) at or about some power target.
Abstract:
In a receiver with a multi-stage equalizer, such as an SLI equalizer, cumulative symbol estimates generated in one or more early stages of the equalizer are used as effective pilot symbols to improve channel estimation for later stages.
Abstract:
At a node of a wireless network, equalization operations performed on signals received from a transmitter are adaptively switched to be equalized by an iterative turbo receiver or a linear receiver. A theoretical expression of a post-equalization SINR of a capacity-achieving receiver is used to estimate the post-equalization SINR performance of the turbo receiver. The estimated post-equalization SINR performance is then used as a basis to determine whether the received signal is to be equalized by the turbo receiver or the linear receiver.
Abstract:
Error protection based on a nonlinear code set may be used in a multiple input multiple output (MIMO) radio communications system. A decoder decodes received MIMO data streams and generates an automatic repeat request (ARQ) message for data units received for the MIMO data streams for each transmission time interval. An encoder codes the ARQ message using a code word from a nonlinear code set. At the data transmitter, which transmits one or more data units in transmission time intervals from two or more MIMO data streams, the ARQ message associated with the transmitted data units is decoded using a code word from the nonlinear code set.
Abstract:
A receiver comprises plural receive antennas and electronic circuitry. The plural receive antennas are configured to receive, on plural subcarriers transmitted over a radio interface, a frequency domain signal that comprises contribution from a block of time domain symbols. The electronic circuitry is configured or operable to perform symbol detection of time domain symbols comprising the block by performing a multi-stage joint detection procedure comprising plural stages, and thus serves as a detector (40). For a first stage the block is divided into a first number of sub-blocks each having a sub-block first size. For a second stage the block is divided into a second number of sub-blocks each having a sub-block second size, the sub-block second size being greater than the sub-block first size. For each stage a detector (40) formulates frequency domain combining weights and uses the frequency domain combining weights for combining multiple receive versions of each subcarrier to provide candidate symbol combination values for symbols in each sub-block of the respective stage. For the second stage the detector (40) is further configured to use the candidate symbol combination values of the first stage to formulate joint hypotheses to serve as candidates for the joint detection operation of the second stage.
Abstract:
A wireless communication device or system generates transmit power control feedback for a received power control channel by determining a command error rate (CER), or by identifying a target signal quality for the power control channel according to a defined signal-quality-to-CER mapping function. Generally, the power control channel does not include error-coded data to use for CER estimation. However, in one embodiment, the channel does include known reference bits that are evaluated for CER estimation, with the estimated CER used to set the signal quality target for inner loop power control. In other embodiments, a computed reception error probability is used to identify a CER estimate according to a defined probability-to-CER mapping function. By way of non-limiting example, these embodiments may be used to provide power control feedback for power control commands transmitted on a Fractional Dedicated Physical Channel in WCDMA systems.
Abstract:
A method and apparatus provide advantageous uplink power control for a set of uplink channels transmitted by a mobile terminal or other item of user equipment (UE). The proposed uplink power control maintains the total received power for the set of uplink channels at or about a target received power, while also maintaining the received signal quality for a subset of those channels—e.g., a particular one of them—at or about a target received signal quality. In an advantageous but non-limiting example embodiment, the subset comprises a fixed-rate control channel, and the set includes that control channel and a variable-rate traffic channel. Correspondingly, a base station generates first power control commands to maintain the received signal quality of the control channel at or about some quality target, and generates second power control commands to maintain the total received power (of the two channels) at or about some power target.
Abstract:
The transport format (TF) of a signal may be blindly detected from a reduced set of TF hypotheses. In an example embodiment, a method for the blind detection of a TF of a signal includes filtering a set of transport format hypotheses to identify a reduced set of TF hypotheses using one or more filtering schemes. From the reduced set of TF hypotheses, a TF that is associated with an interfering signal is detected. The TF includes a modulation and a spreading factor for the interfering signal. It may also include a number of channelization codes. In an example implementation, when an interfering signal is to be canceled, symbols carried by the signal are detected using the detected TF. Example filtering schemes include filtering based on system design/operation, filtering based on known configuration information, filtering based on an expected level of interference contribution, and so forth.