Abstract:
An automated environment can include multiple controller devices capable of communicating with multiple accessory devices. The controller devices can automatically elect one of their number as a coordinator device for the environment and can automatically perform a new election if an incumbent coordinator becomes unavailable or resigns. The election processes can be transparent to any users. An elected coordinator can perform various operations to facilitate management of the automated environment, including routing of communications between controllers and accessories.
Abstract:
Apparatuses, systems, and methods for multi-SIM user equipment (UE) devices to perform data operations with a packet data network of a carrier associated with a first SIM of the UE. An indication of a requested data operation with the packet data network of the carrier associated with the first SIM of the UE may be received. The UE may be operating in a dual SIM mode in which the packet data network of the carrier associated with the first SIM of the UE is unavailable. It may be determined if one or more conditions for performing the requested data operation are present and if a data path to perform the requested data operation is available. The requested data operation may be performed if the one or more conditions for performing the requested data operation are present and if a data path to perform the requested data operation is available.
Abstract:
Disclosed herein is a technique for enabling Subscriber Identity Module (SIM) toolkit commands to be properly routed within a mobile device that includes an embedded Universal Integrated Circuit Card (eUICC) configured to manage two or more electronic SIMs (eSIMs). Specifically, the technique involves a baseband component of the mobile device and the eUICC initially exchanging information about their eSIM capabilities to identify whether multiple eSIMs are active within the eUICC. During this exchange of information, the eUICC can generate a list of unique identifiers of the active eSIMs that are managed by the eUICC and provide the list of unique identifiers to the baseband component. In turn, the baseband component can update a configuration to manage the list of unique identifiers and use the list of unique identifiers to properly route SIM toolkit commands to the appropriate eSIM within the eUICC.
Abstract:
Disclosed herein is a technique for updating firmware of an embedded Universal Integrated Circuit Card (eUICC) included in a mobile device. The technique includes the steps of (1) receiving, from a firmware provider, an indication that an updated firmware is available for the eUICC, (2) in response to the indication, providing, to the firmware provider, (i) a unique identifier (ID) associated with the eUICC, and (ii) a nonce value, (3) subsequent to providing, receiving, from the firmware provider, a firmware update package, wherein the firmware update package includes (i) authentication information, and (ii) the updated firmware, (4) subsequent to verifying the authentication information, persisting, to a memory included in the mobile device, a hash value that corresponds to the updated firmware, and (5) installing the updated firmware on the eUICC.
Abstract:
Automated behaviors in an environment can be implemented based on aggregation of individual user routines. For example, mobile devices used by users in the environment can provide information about the users' behavior patterns to a coordinator device that can be located in the environment. The coordinator device can analyze the information to detect an aggregate pattern that involves multiple mobile devices and/or multiple users. Based on a detected aggregate patterns, the coordinator can identify behaviors to automate.
Abstract:
An automated environment can include an accessory device that operates according to an automation rule, to take a prescribed action when a triggering condition occurs. A controller device for the automated environment can determine a user's regular routine and can detect when the user is deviating from the regular routine. The controller device can communicate with accessory devices in the automated environment to modify their behavior relative to the automation rules.
Abstract:
Embodiments are described for identifying and accessing an electronic subscriber identity module (eSIM) and associated content of the eSIM in a multiple eSIM configuration. An embedded Universal Integrated Circuit Card (eUICC) can include multiple eSIMs, where each eSIM can include its own file structures and applications. Some embodiments include a processor of a mobile device transmitting a special command to the eUICC, including an identification that uniquely identifies an eSIM in the eUICC. After selecting the eSIM, the processor can access file structures and applications of the selected eSIM. The processor can then use existing commands to access content in the selected eSIM. The special command can direct the eUICC to activate or deactivate content associated with the selected eSIM. Other embodiments include an eUICC platform operating system interacting with eSIMs associated with logical channels to facilitate identification and access to file structures and applications of the eSIMs.
Abstract:
Methods and apparatus for activating a mobile device for use with a service provider. In one embodiment, a powered-off mobile device having an inserted Subscriber Identity Module (SIM) may be programmed with configuration data while “in box” (e.g., at a point of sale (POS), in a warehouse, etc.) using a near field communication (NFC) data interface. In another exemplary embodiment, information that is stored to a NFC accessible memory can be accessed when the device is non-functional e.g., to retrieve backup data.
Abstract:
A policy-based framework is described. This policy-based framework may be used to specify the privileges for logical entities to perform operations associated with an access-control element (such as an electronic Subscriber Identity Module) located within a secure element in an electronic device. Note that different logical entities may have different privileges for different operations associated with the same or different access-control elements. Moreover, the policy-based framework may specify types of credentials that are used by the logical entities during authentication, so that different types of credentials may be used for different operations and/or by different logical entities. Furthermore, the policy-based framework may specify the security protocols and security levels that are used by the logical entities during authentication, so that different security protocols and security levels may be used for different operations and/or by different logical entities.
Abstract:
In some implementations, radio access technology (RAT) signals can be monitored and used to synchronize an internal clock of a mobile device to a network system clock without registering the mobile device to the network. In some implementations, a RAT processor can be configured to receive RAT signals and to prevent transmission of RAT signals. In some implementations, the internal clock can be associated with a GNSS processor and can be used to calculate a location of the mobile device. In some implementations, a RAT processor that is configured for a particular radio access technology can be configured to monitor signals associated with another radio access technology when synchronizing the internal clock. In some implementations, the RAT processor can monitor signals in response to a power event. The power event can be associated with powering a display of the mobile device.