Abstract:
A circuit produces an output that is proportional to the molar density of gas in a chamber. The circuit employs an operational amplifier which measures the temperature using a RTD or other element that changes resistance with temperature. The RTD is placed such that it produces a decreasing current draw at the inverting input of the operational amplifier as the temperature increases. This decreasing current draw in turn produces a decreasing voltage at the output of the operational amplifier. By changing the ratio of resistors connected to the non-inverting terminal of the operational amplifier one changes the offset of the output voltage. By changing the feedback resistor connected from the output of the operational amplifier to the inverting terminal and connecting the output of the inverting terminal to a voltage divider including the RTD device, one can change the gain with temperature. Thus the output voltage of the operational amplifier is carefully controlled to be proportional to 1/T for many different temperature scales and ranges. The output of the amplifier serves as the biasing voltage for a pressure transducer to provide a first output proportional to P/T. A second pressure transducer provides a second output proportional to P only.
Abstract:
A high temperature pressure sensing system (transducer) including: a pressure sensing piezoresistive sensor formed by a silicon-on-insulator (SOI) process; a SOI amplifier circuit operatively coupled to the piezoresistive sensor; a SOI gain controller circuit including a plurality of resistances that when selectively coupled to the amplifier adjust a gain of the amplifier; a plurality of off-chip contacts corresponding to the resistances, respectively, for electrically activating the corresponding resistances and using a metallization layer for the SOI sensor and SOI ASIC suitable for high temperature interconnections (bonding); wherein the piezoresistive sensor, amplifier circuit and gain control circuit are suitable for use in environments having a temperature greater than 175 degrees C. and reaching between 250° C. and 300° C., and wherein the entire transducer has a high immunity to nuclear radiation.
Abstract:
A pressure sensing device produces an output proportional to applied pressure irrespective of vibration/acceleration of the device, which device also provides an output proportional only to vibration/acceleration of the device irrespective of the pressure.
Abstract:
A sensor is described, which basically consists of a leadless high sensitivity differential transducer chip which responds to both static and dynamic pressure. Located on the transducer are two sensors. One sensor has a thicker diaphragm and responds to both static and dynamic pressure to produce an output indicative of essentially static pressure, the static pressure being of a much higher magnitude than dynamic pressure. The other sensor has a thinner diaphragm and has one side or surface responsive to both static and dynamic pressure. The other side of the differential sensor or transducer structure has a long serpentine reference tube coupled to the underneath of the diaphragm. The tube only allows static pressure to be applied on the underside of the diaphragm and because of the natural resonance frequency of the tube, the dynamic pressure is suppressed and does not, in any manner, interface with the sensor or transducer having a thinned diaphragm. Thus, the thinned diaphragm differential unit provides an output which is indicative of the dynamic pressure, as the static pressure applied to both the top and bottom surfaces of the transducer sensor is cancelled.
Abstract:
An ultra miniature high temperature capacitive inductive pressure transducer is fabricated by MEMS techniques. The transducer consists of two separated pieces of silicon which form the plates of the capacitor, one of which plate is micromachined in such a way to allow a controlled deflection with pressure. The gap between the two capacitive plates is determined by an extending rim on one of the two plates. The two pieces of silicon are subsequently fusion bonded, leading a very small gap between the two plates. An inductor is formed on the top surface of one of the pieces of silicon by sputtering metal in a spiral like fashion on the back side of the non-micromachined plate.
Abstract:
The present invention relates to a compensated pressure transducer having a pressure transducer connected to a coarse temperature adjustment compensator and to a fine temperature adjustment compensator. The coarse temperature adjustment compensator includes an analog circuit and the fine temperature adjustment compensator includes a digital circuit. A pre-amplifier is connected between the pressure transducer and the fine temperature adjustment compensator.
Abstract:
A solid state fuel cell is fabricated from three substructures. There is a porous anode made from n+ silicon which is surrounded by a non-porous ring. The pore size of the anode material is sufficiently large to allow hydrogen gas to flow through and is of a sufficiently high conductivity to easily permit current flow of electrons. One side of the anode has enlarged pores and a layer of titanium and platinum is sputtered or otherwise deposited on the surface with the enlarged pores to produce a coated surface. A cathode is made in a similar manner and is fabricated as the anode. There is a center electrolytic section made from a low conductivity silicon or silicon carbide. The center electrolytic section has the coated side of the anode secured to one side and has the coated side of the cathode secured to the other side. The other or un-coated face of both the anode and the cathode has an electrical contact secured thereto to permit electrons to leave the anode and to reenter the cathode. The electrolytic center structure is filled with an ionic conductor. In this manner, hydrogen is broken into ions and electrons. The electrons cause a current flow, while the ions react with oxygen and produce water which is discharged from the fuel cell as steam or vapor.
Abstract:
A pressure sensing device suitable for medical use including: a dielectrically isolated sensor chip including a first wafer having first and second surfaces, a deflectable diaphragm formed therein and defining an active area of the sensor chip surrounded by an inactive area of the sensor chip, an electronic circuit formed on the first surface in the active area and being adapted to provide a signal indicative of an amount of deflection of the diaphragm, and a non-conductive coating on at least a portion of the second side; and, a plastic header including first and second ends, a recess in the first end and a plurality of electrically conductive pins extending from the recess through the header and out the second end; wherein, the sensor chip is secured within the recess of the plastic header such that the electronic circuit is in electrical contact with at least one of the pins.
Abstract:
A force transducer comprises a housing having a front and rear portions joined together by a platform, which platform is thinner than the housing portions. The platform contains at least one sensor which is operative to provide an output according to the extent of compression or expansion of the platform when a force is applied to the transducer housing. A compliant tubular member is secured at one end to the front portion of the housing and at the other end to the rear portion of the housing. The compliant tubular member surrounds the sensor to protect the sensor from the surrounding environment. The tubular member expands and contracts compliantly with the applied force so that the sensor which is mounted on the platform is substantially unimpeded by the tubular member and provides an output directly proportional to the force applied to the housing.
Abstract:
An oil filled pressure transducer utilizes a leadless sensor which is secured to a header comprising a glass pre-form and a header shell. The glass pre-form contains holes which accept header pins and another aperture or hole which accepts the oil fill tube. The diameter of the sensor is chosen to be almost as large as the inner diameter of the shell. In this manner, there is a small cut out over the portion of the sensor that would otherwise cover the oil fill tube. The sensor is mounted to the header using glass bonds. There is a very small space between the outer diameter of the sensor and the inner diameter header housing, which is filled with glass used to mount the sensor. Since there are no ball bonds or gold wires in the area between the surface of the sensor and the diaphragm, the distance between the sensor and metal diaphragm is drastically reduced, thereby substantially reducing the backpressure problem.