Abstract:
Apparatuses, systems, and methods for user equipment (UE) devices to more efficiently scan frequency bands for potential base stations may include a UE configured maintain a first list of cells for which a cellular scan has been successful and a second list of cells for which a cellular scan has not been successful. The UE may be configured perform a first cellular while camped on a first cell at an expiration of a scan timer and, if the cellular scan is not successful, the increment a first failure count variable associated with the first cell and add the first cell to the second list if the first cell is not present on the first or second list. Additionally, if the first cellular scan is successful, the UE may be configured to add the first cell to the first list if the first cell is not present on the first list.
Abstract:
A method for providing indication of an SRVCC handover is disclosed. The method can include a first wireless communication device participating in a voice call with a second wireless communication device via a connection between the first wireless communication device and a first network. The method can further include the first wireless communication device determining a condition indicative of an impending SRVCC handover of the first wireless communication device from the first network to a legacy network. In response to the condition, the method can additionally include the first wireless communication device formatting a message including an indication that the first wireless communication device is going to perform the SRVCC handover and sending the message to the second wireless communication device prior to performance of the SRVCC handover.
Abstract:
A method for reducing power consumption in connected mode discontinuous reception is disclosed. The method can include a wireless communication device sending a transmission for a pending HARQ retransmission process and receiving an ACK for the transmission. The method can further include the wireless communication device determining a subset of remaining uplink transmission opportunities in the pending HARQ retransmission process to monitor for an uplink grant in response to receiving the ACK and monitoring the subset of remaining uplink transmission opportunities for an uplink grant. The method can additionally include the wireless communication device entering a sleep state for any uplink transmission opportunities remaining in the pending HARQ retransmission process after monitoring the subset of remaining uplink transmission opportunities in an instance in which an uplink grant for the pending HARQ retransmission process is not received for any of the subset of remaining uplink transmission opportunities.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
A user identity module (UIM) is incorporated in user equipment such as a mobile phone or mobile device. The UIM is configured to provision itself while roaming away from a home network as follows. The UIM may: send to the UE a request for information identifying a current radio access technology (RAT) that the UE is camped on; receive the current RAT information from the UE; send to the UE a request for network location information, where the network location information identifies a network in which the UE is currently camped; receive the network location information from the UE; generate an access point name (APN) using the current RAT information and the network location information; and open a channel through the network to a remote agent (e.g., a provisioning server) using the access point name.
Abstract:
A method includes a wireless mobile device communicating with a wireless network via an evolved high rate packet data (eHRPD) interface. The wireless mobile device may receive a vendor specific network control protocol (VSNCP) packet such as a terminate-request packet, for example, that indicates the wireless network has requested a PDN disconnection. The VSNCP packet includes a cause code that indicates a reason for the PDN disconnection request. The wireless device may use the cause code to determine the reason for the PDN disconnection request. Accordingly, in response to receiving the VSNCP packet, the wireless mobile device may perform one or more operations in an effort to resolve any issues that may have caused the PDN disconnection request.
Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
This disclosure relates to methods and devices for mitigating overheating in a user equipment device (UE). The UE is configured to communicate over each of LTE and 5G NR and may be configured to communicate through 5G NR over each of a Sub-6 GHz and a millimeter Wave (mmW) frequency band. The UE is configured to establish an ENDC connection with an enB and one or more gNBs. The UE implements intelligent transmission modification and cell measurement adjustments to mitigate overheating and reduce battery drain.
Abstract:
A user equipment (UE) determines a transmission power for data transmission to a network. The UE determines a specific absorption rate (SAR) limit associated with the UE and determines a transmission power to be allocated to data transmissions based on one or more applications running on the UE and the SAR limit.
Abstract:
This disclosure relates to techniques for providing a framework for supporting custom signaling between a wireless device and a cellular network. A wireless device and a cellular base station may establish a wireless link. The wireless device and the cellular base station may perform custom signaling in accordance with the custom signaling framework.