Abstract:
In one embodiment, a processor includes a microcode storage including processor instructions to create and execute a hidden resource manager (HRM) to execute in a hidden environment that is not visible to system software. The processor may further include an extend register to store security information including a measurement of at least one kernel code module of the hidden environment and a status of a verification of the at least one kernel code module. Other embodiments are described and claimed.
Abstract:
A read transistor for single poly non-volatile memory using a body contacted SOI transistor and a method of manufacturing the same is provided. The non-volatile random access memory is formed in silicon on insulator (SOI). The non-volatile random access memory includes a read field effect transistor (FET) having a body contact formed in the silicon of the SOI. The body contact is in electrical contact with a diffusion region under a gate of the read FET.
Abstract:
A plurality of gate structures are formed on a substrate. Each of the gate structures includes a first gate electrode and source and drain regions. The first gate electrode is removed from each of the gate structures. A first photoresist is applied to block gate structures having source regions in a source-down direction. A first halo implantation is performed in gate structures having source regions in a source-up direction at a first angle. The first photoresist is removed. A second photoresist is applied to block gate structures having source regions in a source-up direction. A second halo implantation is performed in gate structures having source regions in a source-down direction at a second angle. The second photoresist is removed. Replacement gate electrodes are formed in each of the gate structures.
Abstract:
A plurality of gate structures are formed on a substrate. Each of the gate structures includes a first gate electrode and source and drain regions. The first gate electrode is removed from each of the gate structures. A first photoresist is applied to block gate structures having source regions in a source-down direction. A first halo implantation is performed in gate structures having source regions in a source-up direction at a first angle. The first photoresist is removed. A second photoresist is applied to block gate structures having source regions in a source-up direction. A second halo implantation is performed in gate structures having source regions in a source-down direction at a second angle. The second photoresist is removed. Replacement gate electrodes are formed in each of the gate structures.
Abstract:
Techniques for combining transistors having different threshold voltage requirements from one another are provided. In one aspect, a semiconductor device comprises a substrate having a first and a second nFET region, and a first and a second pFET region; a logic nFET on the substrate over the first nFET region; a logic pFET on the substrate over the first pFET region; a SRAM nFET on the substrate over the second nFET region; and a SRAM pFET on the substrate over the second pFET region, each comprising a gate stack having a metal layer over a high-K layer. The logic nFET gate stack further comprises a capping layer separating the metal layer from the high-K layer, wherein the capping layer is further configured to shift a threshold voltage of the logic nFET relative to a threshold voltage of one or more of the logic pFET, SRAM nFET and SRAM pFET.
Abstract:
A fully depleted semiconductor-on-insulator (FDSOI) transistor structure includes a back gate electrode having a limited thickness and aligned to a front gate electrode. The back gate electrode is formed in a first substrate by ion implantation of dopants through a first oxide cap layer. Global alignment markers are formed in the first substrate to enable alignment of the front gate electrode to the back gate electrode. The global alignment markers enable preparation of a virtually flat substrate on the first substrate so that the first substrate can be bonded to a second substrate in a reliable manner.
Abstract:
A read transistor for single poly non-volatile memory using a body contacted SOI transistor and a method of manufacturing the same is provided. The non-volatile random access memory is formed in silicon on insulator (SOI). The non-volatile random access memory includes a read field effect transistor (FET) having a body contact formed in the silicon of the SOI. The body contact is in electrical contact with a diffusion region under a gate of the read FET.
Abstract:
Systems, methods and mediums with instructions for viewing medical data are provided. A system for viewing medical data can include a computer processor, a database and a user interface. The database can include numerous entries from numerous clinical modalities. Each entry can include image data and/or non-image data. Each entry can include annotated medical information from a previous study. The annotated medical information can include comments and markings. The database can be searchable to identify an entry based on input medical information relating to a current study. The user interface can be configured to simultaneously display annotated medical information from an identified entry and medical information from the current study. The system can further include a second user interface configured to display medical information, allow a user to annotate the medical information, and allow the user to save the annotated medical information as an entry in the database.
Abstract:
A top semiconductor layer is formed with two different thicknesses such that a step is formed underneath a body region of a semiconductor-on-insulator (SOI) field effect transistor at the interface between a top semiconductor layer and an underlying buried insulator layer. The interface and the accompanying interfacial defects in the body region provide recombination centers, which increase the recombination rate between the holes and electrons in the body region. Optionally, a spacer portion, comprising a material that functions as recombination centers, is formed on sidewalls of the step to provide an enhanced recombination rate between holes and electrons in the body region, which increases the bipolar breakdown voltage of a SOI field effect transistor.
Abstract:
Techniques for combining transistors having different threshold voltage requirements from one another are provided. In one aspect, a semiconductor device comprises a substrate having a first and a second nFET region, and a first and a second pFET region; a logic nFET on the substrate over the first nFET region; a logic pFET on the substrate over the first pFET region; a SRAM nFET on the substrate over the second nFET region; and a SRAM pFET on the substrate over the second pFET region, each comprising a gate stack having a metal layer over a high-K layer. The logic nFET gate stack further comprises a capping layer separating the metal layer from the high-K layer, wherein the capping layer is further configured to shift a threshold voltage of the logic nFET relative to a threshold voltage of one or more of the logic pFET, SRAM nFET and SRAM pFET.