Abstract:
Various embodiments include a method of producing chemically pure and stably dispersed metal and metal-alloy nanoparticle colloids with ultrafast pulsed laser ablation. A method comprises irradiating a metal or metal alloy target submerged in a liquid with ultrashort laser pulses at a high repetition rate, cooling a portion of the liquid that includes an irradiated region, and collecting nanoparticles produced with the laser irradiation and liquid cooling. The method may be implemented with a high repetition rate ultrafast pulsed laser source, an optical system for focusing and moving the pulsed laser beams, a metal or metal alloy target submerged in a liquid, and a liquid circulating system to cool the laser focal volume and collect the nanoparticle products. By controlling various laser parameters, and with optional liquid flow movement, the method provides stable colloids of dispersed metal and metal-alloy nanoparticles. In various embodiments additional stabilizing chemical agents are not required.
Abstract:
Various blanks and constructs formed therefrom are provided. The various constructs include features for supporting a food item at an elevated position to enhance the heating, browning, and/or crisping of the food item in a microwave oven.
Abstract:
Methods for fabricating a photovoltaic device on complexly shaped fabricated objects, such as car bodies are disclosed. Preferably the photovoltaic device includes absorber layers comprising Copper, Indium, Gallium, Selenide (CIGS) or Copper, Zinc, Tin, Sulfide (CZTS). The method includes the following steps: a colloidal suspension of metal surface-charged nanoparticles is formed; electrophoretic deposition is used to deposit the nanopartieles in a metal thin film onto a complexly shaped surface of the substrate; the metal thin film is heated in the presence of a chalcogen source to convert the metal thin film into a metal chalcogenide thin film layer; a buffer layer is formed on the metal chalcogenide thin film layer using a chemical bath deposition; an intrinsic zinc oxide insulating layer is formed adjacent to a side of the buffer layer, opposite the metal chalcogenide thin film layer, by chemical vapor deposition; and finally, a transparent conducting oxide is formed adjacent to a side of the intrinsic zinc oxide, opposite the buffer layer, by chemical vapor deposition.
Abstract:
A supported slide safety member. A slide block disposed on the inner side of an upper cover of a socket, includes two inclined surfaces in the same direction disposed on the outer side of the slide block with a slide block window respectively disposed on a lower side of each inclined surface, and a protruding supporting shaft disposed on the inner side of the slide block. A cover plate with two cover windows is disposed on the inner side of the slide block, and the outer side of the cover plate is in contact with the supporting shaft. An elastic component is connected between the slide block and the upper cover. A stop surface is disposed on both the inner side and the outer side of a tail end of the slide block, stopped by and upper stop rib and a lower stop rib.
Abstract:
This invention relates to monospecific and multispecific antibodies that may be utilized for the diagnosis and treatment of various diseases. In addition, these antibodies may be modified by protease cleavage. Protease control or regulation may be provided by a protease site located in, for example, a linker. These protease-regulated antibodies may also be utilized for the diagnosis and treatment of various diseases.
Abstract:
An interactive data mining system (100, 3000) that is suitable for data mining large high dimensional (e.g., 200 dimension) data sets is provided. The system graphically presents rules in a context allowing users to readily gain an intuitive appreciation of the significance of important attributes (data fields) in the data. The system (100, 3000) uses metrics to quantify the importance of the various data attributes, data values, attribute/value pairs, ranks them according to the metrics and displays histograms and lists of attributes and values in order according to the metric, thereby allowing the user to rapidly find the most interesting aspects of the data. The system explores the impact of user defined constraints and presents histograms and rule cubes including superposed and interleaved rule cubes showing the effect of the constraints.
Abstract:
Threat protection networks are described. Embodiments of threat protection network in accordance with the invention use expert systems to determine the nature of potential threats to a remote computer. In several embodiments, a secure peer-to-peer network is used to rapidly distribute information concerning the nature of the potential threat through the threat protection network. One embodiment of the invention includes at least one client computer connected to a network, a server that stores threat definition data and is connected to the network, an expert system in communication with the server. In addition, the client computer is configured to refer potential threats to the server, the server is configured to refer to the expert system any potential threat forwarded by a client computer that is not identified in the threat definition data and the expert system is configured to determine whether the potential threat is an actual threat by exposing at least one test computer to the potential threat and observing the behavior of the test computer.
Abstract:
Various embodiments include a method of producing chemically pure and stably dispersed metal and metal-alloy nanoparticle colloids with ultrafast pulsed laser ablation. A method comprises irradiating a metal or metal alloy target submerged in a liquid with ultrashort laser pulses at a high repetition rate, cooling a portion of the liquid that includes an irradiated region, and collecting nanoparticles produced with the laser irradiation and liquid cooling. The method may be implemented with a high repetition rate ultrafast pulsed laser source, an optical system for focusing and moving the pulsed laser beams, a metal or metal alloy target submerged in a liquid, and a liquid circulating system to cool the laser focal volume and collect the nanoparticle products. By controlling various laser parameters, and with optional liquid flow movement, the method provides stable colloids of dispersed metal and metal-alloy nanoparticles. In various embodiments additional stabilizing chemical agents are not required.
Abstract:
A microwave heating construct comprises a base, a wall extending upwardly around the base for defining a cavity for receiving a food item, and a microwave energy shielding element overlying a lower margin of the wall, the microwave energy shielding element having an upper edge including a substantially incurved portion.
Abstract:
A one-step and room-temperature process for depositing nanoparticles or nanocomposite (nanoparticle-assembled) films of metal oxides such as crystalline titanium dioxide (TiO2) onto a substrate surface using ultrafast pulsed laser ablation of Titania or metal titanium target. The system includes a pulsed laser with a pulse duration ranging from a few femtoseconds to a few tens of picoseconds, an optical setup for processing the laser beam such that the beam is focused onto the target surface with an appropriate average energy density and an appropriate energy density distribution, and a vacuum chamber in which the target and the substrate are installed and background gases and their pressures are appropriately adjusted.