摘要:
The present invention discloses an image sensor package structure with a large air cavity. The image sensor package structure includes a substrate, a chip, a cover and a package material. The chip is combined with the substrate. A plastic sheet of the cover is adhered to the chip and a transparent lid of the cover is combined with the plastic sheet to provide a covering over a sensitization area of the chip so as to form an air cavity. The package material is arranged on the substrate and encapsulated around the chip and the cover. The plastic sheet having a predetermined thickness can increase the distance between the transparent lid and the chip to enlarge the air cavity. Thus, the image-sensing effect of the image sensor package structure can be improved and the ghost image problem resulting from multi-refraction and multi-reflection of light can be minimized.
摘要:
A manufacturing method for molding an image sensor package structure and the image sensor package structure thereof are disclosed. The manufacturing method includes following steps of providing a half-finished image sensor for packaging, arranging a dam on the peripheral of a transparent lid of the half-finished image sensor, positioning the half-finished image sensor within a mold, and injecting a mold compound into the mold cavity of the mold. The dam is arranged on the top surface of the transparent lid and the inner surface of the mold can exactly contact with the top surface of dam so that the mold compound injected into the mold cavity is prevented from overflowing to the transparent lid by the dam. Furthermore, the arrangement of the dam and the mold compound can increase packaged areas and extend blockage to invasive moisture so as to enhance the reliability of the image sensor package structure.
摘要:
The present invention discloses an image sensor package structure. The image sensor package structure includes a substrate, a chip, a transparent lid, a first casing and a package material. The transparent lid covers a sensitization area of the chip and it also adheres to the chip which is deposed on the substrate. The first casing, which adheres to the transparent lid, forms an opening so that light can pass through the opening and the transparent lid to enter into the sensitization area. The package material covers around the chip and the transparent lid and fills between the substrate and the first casing. Because of the arrangement of adhesive layers placed between the first casing and the transparent lid and between the transparent lid and the chip, the blockage area from moisture is elongated. Therefore, the reliability of the image sensor package structure can be enhanced.
摘要:
A method for fabricating a dual-damascene copper structure includes providing a semiconductor substrate having a dielectric layer thereon and a dual-damascene hole positioned in the dielectric layer, wherein a portion of the semiconductor substrate is exposed in the dual-damascene hole. A PVD process and an atomic CVD process are sequentially performed to form a substrate-protecting layer and a tantalum nitride layer in the dual-damascene hole. And then a copper layer is formed in the dual-damascene hole.
摘要:
A method of forming a material film is provided. A chemical vapor deposition (CVD) chamber including therein a showerhead coupled to a gas source and a pedestal coupled to a heater is provided. The showerhead is coupled to a radio frequency (RF) power source. A substrate is positioned on the pedestal. The substrate is then heated by the heater. A tantalum-containing organic metal precursor gas is flowed into the CVD chamber through the showerhead with the RF power source being off, thereby depositing a material film on the heated substrate. Thereafter the RF power source is turned on to output a RF power. An inert gas is flowed into the chamber. The material film in-situ plasma treated within the CVD chamber by providing the RF power to the inert gas. The substrate is removed out of the CVD chamber.
摘要:
A computer operated method comprises a sequence of steps for management of data of a manufacturing operation with workstations in several different functional locations. The manufacturing operation is configured to perform a specific task at each location. Data for lots of work located in containers in the plant is read. The data which has been read is sent through a polling engine for transmission to be collected in a database system. The collected data is then supplied from the database system to a plurality of programmable workstations which are linked to the database by lines in a star network.