Abstract:
A method comprises determining an operating mode based upon an input voltage and an output voltage of a resonant converter, wherein the resonant converter comprises a switch network coupled to an input dc power source, a resonant tank coupled to the switch network and a transformer coupled between the resonant tank and a secondary rectifier, wherein the secondary rectifier is a full-bridge rectifier, configuring the switch network to operate at a buck converter mode in response to a first input voltage and configuring the secondary rectifier to operate at a boost converter mode in response to a second input voltage, wherein the first voltage is higher than the output voltage and the second voltage is lower than the output voltage.
Abstract:
An inverter comprises a first switch coupled to an input of an output filter and a positive dc bus, a second switch coupled to the input of the output filter and a negative dc bus, a first freewheeling apparatus coupled to the first switch, the second switch and ground, a first soft switching network coupled to the first freewheeling apparatus and the first switch, wherein the first soft switching network is configured such that the first switch is of a first zero voltage transition during a turn-on process of the first switch and a second soft switching network coupled to the first freewheeling apparatus and the second switch, wherein the second soft switching network is configured such that the second switch is of a second zero voltage transition during a turn-on process of the second switch.
Abstract:
An apparatus comprises an isolated power converter coupled between an input dc power source, wherein the isolated power converter comprises a first switch network coupled to a first transformer winding through a first resonant tank and a second switch network coupled to a second transformer winding through a second resonant tank and a dc/dc converter coupled to the second switch network.
Abstract:
An apparatus comprises an isolated power converter coupled to an input dc power source, wherein the isolated power converter comprises a primary switching network operating at a fixed switching frequency, a secondary resonant tank including a dc blocking capacitor and a rectifier having two input terminals coupled to the secondary resonant tank, an output capacitor coupled between a first output terminal of the rectifier and a load and a dc/dc converter coupled between a second output terminal of the rectifier and the load.
Abstract:
An inverter comprises a first input capacitor and a second input capacitor connected in series, an inverting unit comprising a first switch, a second switch, a third switch and a fourth switch connected in series, wherein the inverting unit is connected to an input of an L-C filter, a first bidirectional conductive path connected between a common node of the first switch and the second switch, and a common node of the first input capacitor and the second input capacitor, a second bidirectional conductive path connected between a common node of the third switch and the fourth switch, and the common node of the first input capacitor and the second input capacitor and a flying capacitor connected between the common node of the first switch and the second switch, and the common node of the third switch and the fourth switch.
Abstract:
A converter comprises an input stage coupled to a power source, wherein the input stage comprises a plurality of power switches, a resonant tank coupled to the plurality of power switches, a transformer coupled to the resonant tank, an output stage coupled to the transformer, an efficiency point tracking indicator coupled to the converter, a detector coupled to the efficiency point tracking indicator and a control circuit configured to receive an efficiency point tracking signal from the detector and adjust a switching frequency of the power switches based upon the efficiency point tracking signal.
Abstract:
An apparatus comprises an isolated power converter coupled between an input dc power source, wherein the isolated power converter comprises a first switch network coupled to a first transformer winding through a first resonant tank and a second switch network coupled to a second transformer winding through a second resonant tank and a dc/dc converter coupled to the second switch network.
Abstract:
A converter comprises an input stage coupled to a power source, wherein the input stage comprises a plurality of power switches, a first resonant tank coupled to the input stage, wherein the first resonant tank is of a first Q value, a second resonant tank coupled to the input stage, wherein the second resonant tank is of a second Q value, a transformer coupled to the input stage through the first resonant tank and the second resonant tank and an output stage coupled to the transformer.
Abstract:
A method comprises providing a resonant converter, wherein the resonant converter comprises an input switch network coupled to a power source, wherein the input switch network comprises a plurality of power switches, a resonant tank coupled to the plurality of power switches, a transformer coupled to the resonant tank and an output stage coupled to the transformer, wherein the output stage comprises a synchronous rectifier formed by a first switch and a second switch, detecting a drain voltage of the first switch, comparing the drain voltage with a predetermined voltage threshold, wherein the drain voltage is coupled to a negative input of a comparator and the predetermined voltage threshold is coupled to a positive input of the comparator, generating a logic state based upon an output of the comparator and adjusting, by a control circuit, a switching frequency of the resonant converter based upon the logic state.
Abstract:
An inverter comprises a first boost apparatus, a second boost apparatus, a first half-cycle switching network coupled to the first boost apparatus, wherein the first half-cycle switching network is configured such that a first three-level conductive path is formed when a voltage at a dc source is greater than an instantaneous value of a voltage at an output of the inverter and a first five-level conductive path is formed when the instantaneous value of the voltage at the output of inverter is greater than the voltage at the dc source.