摘要:
To provide a DC/DC converter which does not need to switch a change direction of a control value depending on a power transmission direction between low voltage side and high voltage side, and can control a voltage of a charge and discharge capacitor. A DC/DC converter which controls voltage of a charge and discharge capacitor by a controller that performs a Δduty control which changes an ON duty ratio difference of semiconductor circuits, and a phase shift control which changes a phase difference of an ON period of semiconductor circuits.
摘要:
An apparatus comprises an isolated power converter coupled to an input dc power source, wherein the isolated power converter comprises a first switch network coupled to a first transformer winding and a second switch network coupled to a second transformer winding and a non-isolated power converter coupled to the second switch network of the isolated power converter, wherein a current flowing through the non-isolated power converter is a fraction of a current flowing through the isolated power converter.
摘要:
An apparatus and method for a voltage reference circuit and oscillator which operates for a low voltage power supply. The voltage reference circuit is used in an “always on” mode of operation, and have low power usage. The operational range is 1.1V to 3.6 V, and must allow for sub-bandgap voltage conditions as well as voltage tolerant for higher voltages. The circuit minimizes the number of current branches by avoiding complexity of operational amplifiers and comparator networks. The circuit avoids stacking of more than 2 devices to allow for low voltage operation. The voltage reference circuit between a power supply node and a ground node and configured for generating a reference voltage comprises of a current mirror function providing matching and sourcing network branches, a voltage generator network sourced from a current mirror providing a base-emitter voltage, a current drive function network electrically sourced from a current mirror function, and an output network function sourced from a current mirror providing a voltage reference output voltage. An oscillator circuit between a power supply node and a ground node and configured for generating an oscillating signal comprises of a current mirror function providing matching and sourcing network branches, a current drive function network electrically sourced from said current mirror function, an output network function sourced from said current mirror providing a capacitors, current sources, a capacitor providing charge storage, and output network function, and, a feedback loop network providing reset function.
摘要:
The present invention uses an AC signal and an external DC control voltage to generate a plurality of levels of output DC voltages. The level of the output voltage is determined by the DC control voltage and has the opposite polarity. The invention is preferably implemented as a balanced circuit, which generates spurious signals at even harmonics of the AC frequency signal. The spurious signals can then be filtered out using a low-pass filter.
摘要:
A structure and process are provided for converting DC-DC voltages, which allows both buck and boost conversion utilizing a single switched capacitor array. In one embodiment of this invention, the switched capacitor array comprises multiple gain blocks, where the gain blocks are identical and stacked upon each other. The switches and capacitors are configured so that various combinations of series and parallel capacitor connections are possible, and thus both buck and boost conversions are attainable with one switched capacitor array. Other embodiments of the present invention use multiple gain blocks, configured such that the capacitor in each gain block can be connected to ground. As a result, a single charge state for a range of desired gains can be configured for use with a shared or common rest state, i.e., a capacitor configuration which is the same regardless of the desired gain. In the charge state, selected capacitors are configured in series for the desired gain setting, while in the shared rest state, all the capacitors are configured in parallel from the output to the input. Because a shared rest state is used, the correct charge is always transferred at the desired gain with a single switched capacitor array.