摘要:
Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide a silica-based core, said core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, Li2O, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 10 and 10000 ppm by weight, and a silica-based cladding surrounding and directly adjacent the core, the cladding including a region having a lower index of refraction than the remainder of such cladding. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained which exhibits a cable cutoff less than 1400 nm chromatic dispersion at 1550 nm between about 13 and 19 ps/nm/km, and a zero dispersion wavelength less than about 1324 nm.
摘要:
An optical fiber adapted to carry optical power for powering an electrical device and also optionally adapted to carry optical data for signal processing. The optical fiber capable of carrying both optical data and optical power includes a central data waveguide region that carries data light and an annular power waveguide region concentrically surrounding the data waveguide region and adapted to carry relatively large amounts of optical power. A first annular isolation region between the data and power waveguide regions and that includes microstructures serves to optically isolate the waveguide regions. An outer annular isolation region serves to confine power light to the power waveguide region and contributes to the bend-resistance of the optical fiber. An optical power and optical data distribution system that utilizes the optical fiber is also described.
摘要:
Optical waveguide fiber that is bend resistant and single mode at 1260 nm and at higher wavelengths. The optical fiber includes a core with a central core region and an annular core region or, alternatively, a high index core region and a low index core region. The optical fiber also includes a cladding with an annular ring region and an annular outer region.
摘要:
Optical waveguide fiber that is bend resistant and single mode at 1260 nm and at higher wavelengths. The optical fiber includes a core of radius R1 and cladding, the cladding having an annular inner region of radius R2, an annular ring region, and an annular outer region. The annular ring region starts at R2, and the ratio R1/R2 is greater than 0.40.
摘要:
An optical fiber comprising: a glass core extending from a centerline to a radius R1; a glass cladding surrounding and in contact with the core, the cladding comprising: a first annular region extending from R1 to a radius R2, the first annular region comprising a radial width, W2=R2−R1, a second annular region extending from R2 to a radius R3, the second annular region comprising a radial width, W3=R3−R2, and a third annular region extending from R3 to an outermost glass radius R4; wherein (i) the core comprises a maximum relative refractive index, Δ1MAX, relative to the third annular region; (ii) wherein the first annular region comprises a radial width W2; and (iii) the second annular region comprises a minimum relative refractive index, Δ3MIN, relative to the third annular region wherein Δ1MAX>Δ2MAX>Δ3MIN, and Δ2MIN>Δ3MIN; and the core and the cladding provide a fiber with cable cutoff less than 1500 nm, dispersion at 1550 nm less than 12 ps/nm/km, effective area at 1550 nm greater than 60 μm2, and preferably greater than 70 μm2. The second annular cladding region may contain a plurality of randomly dispersed holes.
摘要:
A method of making an optical fiber preform includes depositing silica glass soot on the inside of a substrate tube via a chemical vapor deposition operation. The silica glass soot is consolidated into silica glass under controlled conditions such that the consolidated silica glass on the interior of the substrate tube contains a non-periodic array of gaseous voids in a cladding region of the optical fiber preform. The optical fiber preform may be used to produce an optical fiber having a core and a cladding containing voids formed from the gaseous voids of the cladding region of the optical fiber preform. The core of the optical fiber has a first index of refraction and the cladding has a second index of refraction less than that of the core.
摘要:
Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular hole-containing region that contains non-periodically disposed holes. The optical fiber provides single mode transmission and low bend loss.
摘要:
A thin-walled porous ceramic wall-flow filter is disclosed. The filter produces a relatively lower pressure drop coupled with relatively high initial filtration efficiency (FE0), and may enable packaging the filter in a smaller volume. The filter includes a plurality of porous ceramic walls forming cell channels. At least some of the cells are plugged forcing some exhaust gases through the walls, thereby filtering out entrained particulates. The walls have a wall thickness (Twall) wherein 102 μm≦Twall
摘要翻译:公开了一种薄壁多孔陶瓷壁流式过滤器。 过滤器产生相对较低的压降以及相对较高的初始过滤效率(FE0),并且可以使过滤器能够以更小的体积包装。 该过滤器包括多个多孔陶瓷壁,形成单元通道。 至少一些电池被堵塞,迫使一些废气穿过壁,从而过滤掉夹带的颗粒。 壁具有壁厚(T wall),其中102mum <= T wall <279μm,中值孔径(MPD),并且其中10
摘要:
A method for deposition glass soot for making an optical fiber preform. A fuel and a glass precursor are flowed to a burner flame forming glass soot which is deposited onto a glass target. By first depositing an insulating layer of glass soot with a low velocity burner flame, the amount of water which may be adsorbed into the surface of the glass target can be reduced. Thereafter, the flame velocity may be increased to increase the deposition rate of the glass soot without significantly increasing the concentration of water incorporated into the glass target.
摘要:
Disclosed is an alkali-doped optical fiber perform and method for making the same. A silica glass member, such as a rod or the like is heated in a furnace chamber at a temperature of less than 75° C. below the softening point of the glass rod in an environment containing an alkali metal vapor to form an alkali metal oxide doped glass rod. This method provides a peak concentration in the outer half portion of the silica glass member. The alkali metal oxide doped glass member may be overclad with additional glass to form an optical fiber preform ready for drawing into an optical fiber. Alternatively, the alkali metal oxide doped glass member may be inserted into a porous, glass soot optical fiber preform or inserted into a tube comprising solid glass.