摘要:
A strained silicon p-type MOSFET utilizes a strained silicon channel region formed on a silicon germanium substrate. Silicon germanium regions are formed on the silicon germanium layer adjacent to ends of the strained silicon channel region, and shallow source and drain extensions are implanted in the silicon germanium material. The shallow source and drain extensions do not extend into the strained silicon channel region. By forming the source and drain extensions in silicon germanium material rather than in silicon, source and drain extension distortions caused by the enhanced diffusion rate of boron in silicon are avoided.
摘要:
An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in a strained silicon (SMOS) process. The liner for the trench is formed from a layer deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be an LPCVD. An annealing step can be utilized to form the liner.
摘要:
The formation of shallow trench isolations in a strained silicon MOSFET includes performing ion implantation in the strained silicon layer in the regions to be etched to form the trenches of the shallow trench isolations. The dosage of the implanted ions and the energy of implantation are chosen so as to damage the crystal lattice of the strained silicon throughout the thickness of the strained silicon layer in the shallow trench isolation regions to such a degree that the etch rate of the strained silicon in those regions is increased to approximately the same as or greater than the etch rate of the underlying undamaged silicon germanium. Subsequent etching yields trenches with significantly reduced or eliminated undercutting of the silicon germanium relative to the strained silicon. This in turn substantially prevents the formation of fully depleted silicon on insulator regions under the ends of the gate, thus improving the MOSFET leakage current.
摘要:
A method of fabricating an SMOS integrated circuit with source and drain junctions utilizes an offset gate spacer for N-type transistors. Ions are implanted to form the source and drain regions in a strained layer. The offset spacer reduces problems associated with Arsenic (As) diffusion on strained semiconductor layers. The process can be utilized for SMOS metal oxide semiconductor field effect transistors (MOSFETs). The strained layer can be a strained silicon layer formed above a germanium layer.
摘要:
The formation of shallow trench isolations in a strained silicon MOSFET includes implantation of a dopant into overhang portions of the strained silicon layer and silicon germanium layer at the edges of trenches in which shallow trench isolations are to be formed. The conductivity type of the dopant is chosen to be opposite the conductivity type of the source and drain dopants. The implanted dopant increases the threshold voltage Vt beneath the ends of the gate in overhang portions of the strained silicon layer so that it is approximately equal to or greater than that of the remainder of the MOSFET. The resulting strained silicon MOSFET exhibits reduced leakage current beneath the ends of the gate.
摘要:
A strained silicon layer is grown on a layer of silicon germanium and a layer of silicon germanium is grown on the strained silicon in a single continuous in situ deposition process with the strained silicon. Shallow trench isolations are formed in the lower layer of silicon germanium prior to formation of the strained silicon layer. The two silicon germanium layers effectively provide dual substrates at both surfaces of the strained silicon layer that serve to maintain the tensile strain of the strained silicon layer and resist the formation of misfit dislocations that might otherwise result from temperature changes during processing. Consequently the critical thickness of strained silicon that can be grown without significant misfit dislocations during later processing is effectively doubled for a given germanium content of the silicon germanium layers. The formation of shallow trench isolations prior to formation of the strained silicon layer avoids subjecting the strained silicon layer to extreme thermal stresses and further reduces the formation of misfit dislocations.