Abstract:
A computer graphics display system contains a graphics processing unit. A graphics processing unit extracts the display information needed for executing graphics display from system memory via the north bridge according to the graphics display command from the CPU and then processes the display information. The display information is stored directly in the system memory so that the graphics processing unit can directly access the system memory without the use of a graphics buffer. This lowers the system cost.
Abstract:
The present disclosure provides a package structure. The package structure includes: a first die having a front surface and a back surface opposite to the front surface; and a first thermal management structure over the back surface. The first thermal management structure includes: a first copper-phosphorous alloy layer thermally coupled to and covering an entirety of the back surface of the first die.
Abstract:
A wafer stack structure includes an interlayer, a first wafer, and a second wafer. The interlayer has a first surface and a second surface opposite to the first surface. The intermediate layer includes a dielectric material layer and a redistribution layer embedded in the dielectric material layer. The first wafer is disposed on the first surface of the interlayer. The second wafer is disposed on the second surface of the interlayer. The second wafer is electrically connected to the first wafer through the redistribution layer of the interlayer.
Abstract:
The present disclosure provides a method for forming a multilayer wiring structure, which includes: forming a patterned copper-phosphorous alloy layer over a carrier by performing a plating operation, and forming a dielectric layer over the patterned copper-phosphorous alloy layer. The forming the patterned copper-phosphorous alloy layer includes providing a plating solution having a copper source and a phosphorous source.
Abstract:
A near-eye display system is provided. The near-eye display system includes a display, an image capturing device, a storage device and a processor. The image capturing device is configured to obtain an image of a field of view in which a user watches the display. The storage device is configured to record programs or commands. The processor loads and executes the programs or commands recorded in the storage device to: calculate an in-view brightness distribution according to the image; establish a luminosity invert mask according to the in-view brightness distribution; and control the display to display according to the luminosity invert mask. In addition, a display method for the near-eye display system is also provided.
Abstract:
A high building power generation device includes a plurality of water storage tanks and at least one power generation unit. The water storage tanks are arranged at specific floors of a high building so that a predetermined vertical distance is provided between adjacent ones of the water storage tanks. The water storage tanks are connected to each other with pipes. A control valve is mounted at a connection of each water storage tank with the pipes. The power generation unit is arranged at a bottom floor of the high building. The pipes connecting with the water storage tanks have a lower opening that is located above the power generation unit. The water storage tanks accumulate and store used water from multiple floors and the control valves are openable to release the used water to impact and drive the power generation unit to generate electrical power.
Abstract:
A back light module includes a light guide plate, at least one first light source, at least one second light source and at least one first reflection element. The light guide plate includes a first light incident surface, a second light incident surface opposite to the first light incident surface, a light emitting surface, and a bottom surface opposite to the light emitting surface. The first light source is disposed beside the first light incident surface and suitable to provide a first non-collimated light beam to the first light incident surface. The second light source is disposed beside the second light incident surface and suitable to provide a first collimated light beam to the second light incident surface. The first reflection element is disposed beside the first light incident surface to reflect the first collimated light beam emitted so as to make the first collimated light beam diverge.
Abstract:
A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, an unsolicited security key from the base station; receiving, by the relay station, a signaling message from the mobile station; and authenticating, by the relay station, the mobile station using the security key. A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, a signaling message from the mobile station; transmitting, by the relay station, subsequent to receiving the signaling message, a security key request to the base station; receiving, by the relay station, a security key from the base station in response to the previously sent security key request; and authenticating, by the relay station, the mobile station using the received security key.
Abstract:
A method for a base station to transmit data, the data to be relayed by a relay station to user equipment, the method including: encoding, based on an identification of the relay station or an identification of the user equipment, control information that indicates resource allocation for the relay station; and transmitting the control information to the relay station.
Abstract:
A reluctance motor system includes a reluctance motor having a stator and a rotor, and a driving circuit. The stator includes phase winding sets each of which includes two windings that are connected in series at a corresponding node. The driving circuit includes switching members each of which is coupled electrically to a respective phase winding set, and each of which includes a first switch, a second switch, a first flyback diode, and a second flyback diode. The driving circuit further includes damping capacitor sets each of which includes a first capacitor coupled between the node and a positive terminal of a DC power source, and a second capacitor coupled between the node and a negative terminal of the DC power source.