Abstract:
Methods and apparatus for initial cell search and selection using beamforming are described. An apparatus is configured with multiple receive beams and includes an antenna and a processor. The processor is operatively coupled to the antenna and sweeps a respective one of the multiple receive beams during each of multiple synchronization sub-frames, using a pre-defined sweep time and dwell period, to detect a synchronization signal. The processor also obtains symbol timing information and a synchronization signal index from the detected synchronization signal. The obtained synchronization signal index corresponds to a synchronization signal index of the set. The process decodes a first broadcast channel using the obtained symbol timing information, the obtained synchronization signal index and a predefined or blind-coded symbol distance between the detected synchronization signal and the first broadcast channel. The process decodes a second broadcast channel using information obtained from decoding the first broadcast channel.
Abstract:
A method and apparatus are described for supporting a two-stage device-to-device (D2D) discovery using a D2D interworking function (IWF). A D2D IWF component may be configured to perform mapping between an application running on an application server and a third generation partnership project (3GPP) network, and provide a set of application programming interfaces (APIs) to allow discovery to be provided as a service to D2D applications. An application identifier may be mapped to a 3GPP identifier. Further, a method and apparatus are described for performing client-server discovery. A first wireless transmit/receive unit (WTRU) may be configured for a listen-only operation, and a second WTRU may be configured to transmit beacons. The first and second WTRUs may perform a radio access network (RAN) discovery procedure at an access stratum (AS) layer. A method and apparatus for performing charging for D2D service using a D2D IWF are also described.
Abstract:
A method and apparatus for offloading backhaul traffic are disclosed. A first base station may detect a condition triggering backhaul traffic offloading for a wireless transmit/receive unit (WTRU). The first base station may establish a wireless connection with a second base station, and offload at least one bearer of the WTRU onto the second base station via the wireless connection. The first base station may be a macro-cell base station and the second base station may be a femto-cell base station having a wired connection to Internet and a mobile operator core network. The first or second base station may include a relay functionality and act as a relay between thee WTRU and the other base station. The backhaul link may be established using a Uu, Un, X2 interface or any other interface over a licensed or license-exempt frequency, a TV white space frequency, etc.
Abstract:
Systems, methods, and instrumentalities are disclosed for joining a node to a network, the method comprising a station associated with a first node sending a first beacon, wherein the first beacon is sent with an indication that the first beacon is sent from a station entity, and wherein the station associated with the first node belongs to a first personal basic service set (PBSS); the station associated with the first node receiving a transmission from a station associated with a second node that indicates that the station associated with the second node wants to associate with the station associated with a first node, wherein the station associated with the second node is unassociated with the first PBSS; the station associated with the first node sending a message to a PBSS Control Point (PCP) associated with a third node, wherein the message is associated with handover preparation; the station associated with the first node receiving acceptance to change personality to a PCP and perform handover; and the station associated with the first node changing to a PCP and performing handover, wherein the station associated with the first node forms a second PBSS and does not belong to the first PBSS, and wherein handover comprises the PCP associated with the first node associating with the station associated with the second node.
Abstract:
Systems, methods, and instrumentalities are provided to implement a method for controlling discontinuous reception (DRX). A wireless transmit/receive unit (WTRU) may enter into a DRX state on a first cell layer. The WTRU may transmit, on a second cell layer, a DRX indication of the first cell layer. The WTRU may receive, on the second cell layer, a deactivation signal corresponding to the first cell layer. The WTRU may deactivate, based on the deactivation signal received on the second cell layer, the first cell layer. The WTRU may receive, on the second cell layer, an activation signal corresponding to the first, cell layer. The WTRU, based on the activation signal, may activate the first cell layer.
Abstract:
A method and apparatus for offloading backhaul traffic are disclosed. A first base station may detect a condition triggering backhaul traffic offloading for a wireless transmit/receive unit (WTRU). The first base station may establish a wireless connection with a second base station, and offload at least one bearer of the WTRU onto the second base station via the wireless connection. The first base station may be a macro-cell base station and the second base station may be a femto-cell base station having a wired connection to Internet and a mobile operator core network. The first or second base station may include a relay functionality and act as a relay between the WTRU and the other base station. The backhaul link may be established using a Uu, Un, X2 interface or any other interface over a licensed or license-exempt frequency, a TV white space frequency, etc.
Abstract:
A method, apparatus and system for wireless communication are described. The method includes transmitting and receiving data to and from one or more wireless transmit/receive units (WTRUs) via an underlay system access link. The underlay system is non-standalone, and control information is provided from an overlay system. An underlay base station is linked to other underlay base stations to implement a mesh backhaul. The method also includes transmitting and receiving at least a portion of the data to or from an overlay base station via backhaul links and receiving control data from the overlay base station. The data is split at a packet data convergence protocol (PDCP) entity, and the PDCP entity terminates in the overlay base station and a radio link control (RLC) entity terminates in the underlay base station.
Abstract:
Methods and apparatuses for millimeter wave (mmW) beam acquisition are disclosed. An apparatus may include a processor and a transceiver configured to receive a plurality of signals. The plurality of signals may be swept over time using a respective plurality of beams, and each signal of the plurality of signals may include a sequence based on an index of a respective one of the plurality of beams. The processor and the transceiver may take a measurement of a first signal of the plurality of signals. The transceiver may transmit a measurement report including the measurement of the first signal of the plurality of signals and the index of a respective one of the plurality of beams.
Abstract:
A wireless transmit/receive unit (WTRU) may include one or more antennas and a first transceiver operatively coupled to the antennas. The one or more antennas and the first transceiver may be configured to receive a first signal from a network using zero energy from the WTRU. The one or more antennas and the first transceiver may be further configured to extract energy from the first signal. The first transceiver may be further configured to examine a separation between energy threshold events to decode an energy signature of the first signal. The first transceiver may be further configured to activate a second transceiver operatively coupled to the one or more antennas if the decoded energy signature matches a stored energy signature, wherein the second transceiver is powered by the WTRU. The one or more antennas and the second transceiver may be configured to receive a second signal from the network.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.