Abstract:
A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst to minimize process upsets due to alkylation catalyst deactivation and the resulting catalyst regeneration or replacement. The H-beta catalyst can be used in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can reduce the deactivation of the catalyst in the primary alkylation reactor.
Abstract:
Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a liquid phase reaction zone and recovering ethylbenzene from the reaction zone.
Abstract:
A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst to minimize process upsets due to alkylation catalyst deactivation and the resulting catalyst regeneration or replacement. The H-beta catalyst can be used in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can lead to the reactivation of the catalyst in the primary alkylation reactor.
Abstract:
A process for making styrene is disclosed that includes providing toluene, a co-feed, and a C1 source to a reactor containing a catalyst, reacting toluene with the C1 source in the presence of the catalyst and the co-feed to form a product stream containing ethylbenzene and styrene. The co-feed can be selected from the group of water, carbon monoxide, hydrogen, and combinations thereof.
Abstract:
A process for making styrene in a pre-existing facility including an infrastructure capable of producing styrene, wherein the infrastructure includes at least one dehydrogenation unit. The process includes coupling an alkylation unit including an alkylation reactor to the infrastructure and contacting toluene with a C1 source in the presence of a first catalyst and a co-feed in the alkylation reactor to form a first product stream comprising styrene and ethylbenzene. The styrene and ethylbenzene from the first product stream are routed for further processing to a portion of the pre-existing facility.
Abstract:
A styrene monomer reclamation process and system is disclosed. The styrene monomer reclamation process includes providing a waste plastic. The waste plastic includes styrenic polymers. The waste plastic is formed into polymer particles. At least a portion of the polymer particles are dissolved in a solvent to form a polymer stream. The dissolved polymer particles are depolymerized to form a styrene monomer stream.
Abstract:
A process for making ethylbenzene and/or styrene by reacting toluene with methane in one or more microreactors is disclosed. In one embodiment a method of revamping an existing styrene production facility by adding one or more microreactors capable of reacting toluene with methane to produce a product stream comprising ethylbenzene and/or styrene is disclosed.
Abstract:
A method for the separation of hydrocarbon compounds utilizing a dividing wall distillation column is described. The dividing wall distillation column enables one or more side draw stream to be removed from the dividing wall distillation column in addition to an overhead stream and a bottoms stream.