摘要:
A contour of a mask design for an integrated circuit is modified to compensate for systematic variations arising from non-optical effects such as stress, well proximity, rapid thermal anneal, or spacer thickness. Electrical characteristics of a simulated integrated circuit chip fabricated using the mask design are extracted and compared to design specifications, and one or more edges of the contour are adjusted to reduce the systematic variation until the electrical characteristic is within specification. The particular electrical characteristic preferably depends on which layer is to be fabricated from the mask: on-current for a polysilicon; resistance for contact; resistance and capacitance for metal; current for active; and resistance for vias. For systematic threshold voltage variation, the contour is adjusted to match a gate length which corresponds to an on-current value according to pre-calculated curves for contour current and gate length at a nominal threshold voltage of the chip.
摘要:
A test structure for statistical characterization of local device mismatches contains densely populated SRAM devices arranged in a row/column addressable array that enables resource sharing of many devices. The test structure includes a built-in sensing mechanism to calibrate or null out sources of error, and current steering to avoid negative effects of current leakage along spurious paths. The gate and drain lines of each column are driven from both the top and bottom to minimizes parasitic effects. The system can handle a large number of devices while still providing high spatial resolution of current measurements.
摘要:
A method and test circuit provide measurements to aid in the understanding of time-varying threshold voltage changes such as negative bias temperature instability and positive bias temperature instability. In order to provide accurate measurements during an early stage in the threshold variation, a current generating circuit is integrated on a substrate with the device under test, which may be a device selected from among an array of devices. The current generating circuit may be a current mirror that responds to an externally-supplied current provided by a test system. A voltage source circuit may be included to hold the drain-source voltage of the transistor constant, although not required. A stress is applied prior to the measurement phase, which may include a controllable relaxation period after the stress is removed.
摘要:
A method and test system for fast determination of parameter variation statistics provides a mechanism for determining process variation and parameter statistics using low computing power and readily available test equipment. A test array having individually selectable devices is stimulated under computer control to select each of the devices sequentially. A test output from the array provides a current or voltage that dependent on a particular device parameter. The sequential selection of the devices produces a voltage or current waveform, characteristics of which are measured using a digital multi-meter that is interfaced to the computer. The rms value of the current or voltage at the test output is an indication of the standard deviation of the parameter variation and the DC value of the current or voltage is an indication of the mean value of the parameter.
摘要:
A test circuit for fast determination of device capacitance variation statistics provides a mechanism for determining process variation and parameter statistics using low computing power and readily available test equipment. A test array having individually selectable devices is stimulated under computer control to select each of the devices sequentially. A test output from the array provides a current or voltage that dependent on a particular device parameter. The sequential selection of the devices produces a voltage or current waveform, characteristics of which are measured using a digital multi-meter that is interfaced to the computer. The rms value of the current or voltage at the test output is an indication of the standard deviation of the parameter variation and the DC value of the current or voltage is an indication of the mean value of the parameter.
摘要:
A method of measuring threshold voltage variation using a device array provides accurate threshold voltage distribution values for process verification and improvement. The characterization array imposes a fixed drain-source voltage and a constant channel current at individual devices within the array. Another circuit senses the source voltage of the individual device within the array. The statistical distribution of the threshold voltage is determined directly from the source voltage distribution by offsetting each source voltage by a value determined by completely characterizing one or more devices within the array. The resulting methodology avoids the necessity of otherwise characterizing each device within the array, thus reducing measurement time dramatically.
摘要:
A method for determining threshold voltage variation rapidly provides accurate threshold voltage distribution values for process verification and improvement. The method operates a characterization away including a circuit for imposing a fixed drain-source voltage and a constant channel current at individual devices within the array, while sensing the source voltage of the individual device. The statistical distribution of the threshold voltage is determined directly from the source voltage distribution by offsetting each source voltage by a value determined by completely characterizing one or more devices within the array. The resulting methodology avoids the necessity of otherwise characterizing each device within the array, thus reducing measurement time dramatically.
摘要:
A scannable virtual rail method and ring oscillator circuit for measuring variations in device characteristics provides the ability to study random device characteristic variation as well as systematic differences between N-channel and P-channel devices using a ring oscillator frequency measurement. The ring oscillator is operated from at least one virtual power supply rail that is connected to the actual power supply rail by a plurality of transistors controlled by a programmable source. The transistors are physically distributed along the physical distribution of the ring oscillator elements and each can be enabled in turn and the variation in ring oscillator frequency measured. The ring oscillator frequency measurements yield information about the variation between the transistors and N-channel vs. P-channel variation can be studied by employing positive and negative virtual power supply rails with corresponding P-channel and N-channel control transistors.