Abstract:
A method of determining an operation of at least one of a plurality of generators in a power generation system. The method includes identifying a system parameter that is related to operation of the power generation system; and determining which of the plurality of generators to operate to minimize fuel consumption of the power generation system based on the system parameter. Other methods include identifying a system parameter that is related to operation of the power generation system; and determining which of the plurality of generators to operate by optimizing an operating variable of the power generation system based on the system parameter.
Abstract:
An apparatus includes a controlled field alternator or utility source of electrical power, a segmented waveform converter, and a controller. The source of electrical power is configured to generate a polyphase signal. The synchronous inverter includes multiple switches connected between the polyphase signal of the source of electrical power and an output filter. The controller is configured to provide a control signal for the switches based on measured electrical quantities associated with the output filter and may provide a field control signal to the controlled field alternator. The apparatus may be applied to a vehicle, a lawnmower, a zero turn radius lawnmower, or another type of machine.
Abstract:
Some embodiments relate to an example generator management system. The generator management system includes a first generator that is adapted to supply power to a load and a first generator controller that operates the first generator. The generator management system further includes a second generator that is adapted to supply power to the load and a second generator controller that operates the second generator. The generator management system further includes a communication bus that connects the first generator controller and the second generator controller such that the first generator controller and the second generator controller exchange data. At least one of the first generator controller and the second generator controller selectively activates the first generator and the second generator in an order that depends on an operating parameter of the first generator and the second generator (as opposed to a fixed sequence which is done in existing systems).
Abstract:
Some embodiments relate to an internal combustion engine that includes a combustion chamber and a rotating component. The internal combustion engine further includes a sensing system that detects an angular position of the rotating component. A controller calculates a ratio between air and fuel in the combustion chamber based on the detected position of the rotating component. As an example, the rotating component may be a crankshaft where the controller calculates a speed of the crankshaft and an acceleration of the crankshaft based on the detected position of the crankshaft.
Abstract:
A power generation system that may include a generator having an alternator and an internal combustion engine configured to drive the alternator to generate power. The alternator may convert the mechanical energy created by the engine to electrical energy, such as alternating current. The generator may supply the electrical energy from the alternator to various devices which may be connected with the alternator. The power generation system may further include a load bank. The load bank may include one or more resistive elements, inductive elements, capacitive elements, or combinations of elements. The power generation system may include a cooling system that may remove heat from one or both the internal combustion engine and the load bank. The cooling system may include a liquid that passes through various components of the internal combustion engine to transfer the heat to or from the engine and the load bank.
Abstract:
An output of a generator may vary according to the speed of the engine, physical characteristics of the engine, or other factors. A profile for a generator that describes a periodic fluctuation in an operating characteristic for the generator is identified. A field current of an alternator associated with the generator is modified based on the profile for the generator in order to counter variations in the output of the generator.
Abstract:
In one embodiment, an apparatus includes a rotor-mounted memory and a rotor-mounted controller. The rotor-mounted memory is configured to store sensor data indicative of the operation of a generator. The rotor-mounted controller is configured to access the sensor data from the rotor-mounted memory, perform an analysis of the sensor data, and generate a generator command at the controller based on the sensor data. The apparatus may be a generator configured to convert mechanical energy to electrical energy.
Abstract:
A fuel delivery system may be utilized in an internal combustion engine or a generator engine. The fuel delivery system includes a fuel injector and a venturi. The venturi provides a force for delivering the fuel into the manifold of the engine, and the fuel injector provides metering to control the amount of fuel delivered into the manifold of the engine. In one example, the fuel delivery system includes a first chamber configured to enclose a gaseous fuel, a second chamber configured to direct a flow of air through the venturi, and a plunger. The plunger is controlled to selectively connect and disconnect the first chamber and the second chamber to control the flow of the gaseous fuel into the second chamber under a differential pressure of the venturi.
Abstract:
A power generation system that may include a generator having an alternator and an internal combustion engine configured to drive the alternator to generate power. The alternator may convert the mechanical energy created by the engine to electrical energy, such as alternating current. The generator may supply the electrical energy from the alternator to various devices which may be connected with the alternator. The power generation system may further include a load bank. The load bank may include one or more resistive elements, inductive elements, capacitive elements, or combinations of elements. The power generation system may include a cooling system that may remove heat from one or both the internal combustion engine and the load bank. The cooling system may include a liquid that passes through various components of the internal combustion engine to transfer the heat to or from the engine and the load bank.
Abstract:
An electric machine includes at least a printed circuit board and a magnetically permeable element. The printed circuit board includes a reluctance coil configured to generate a voltage in presence of a magnetic flux. The magnetically permeable element has a first end positioned adjacent to a rotor of the electrical machine and a second end positioned adjacent to the coil of the printed circuit board. In some examples, rotation of the rotor causes a change in the magnetic flux through the magnetically permeable element and generation of the voltage across the reluctance coil.