Abstract:
A method and apparatus for multiplexing reference signals in a predetermined number of Code Division Multiplexing (CDM) groups to balance power across Orthogonal Frequency Division Multiplexing (OFDM) symbols are disclosed. In a wireless communication system, orthogonal sequences used for spreading the reference signals are allocated such that the order of orthogonal sequences allocated to a subcarrier of one CDM group has a predetermined offset with respect to the order of orthogonal sequences allocated to a subcarrier of another CDM group, adjacent to the subcarrier of the one CDM group.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and an apparatus for transmitting reference signals in uplink MIMO transmission. According to one embodiment of the present invention, the method for transmitting uplink signals through a terminal in the wireless communication system comprises the steps of: receiving control information including the information on a cyclic shift and/or an orthogonal cover code; allocating the multiplexed reference signals onto an uplink subframe; and transmitting the subframe through a multi-antenna. When the uplink MIMO transmission is multiuser MIMO transmission, the reference signals of the terminal and the reference signals of other terminals can be multiplexed by using the orthogonal cover code.
Abstract:
The present invention relates to a method and device for exchanging data in a wireless communication system. A base station exchanges at least one of a cell identifier (ID) of a higher layer parameter, a cyclic shift parameter nDMRS(1) and a group assignment physical uplink shared channel (PUSCH) parameter #ss with another base station through an X2 interface and performs scheduling of a terminal on the basis of the exchanged information.
Abstract:
A method for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. System information is transmitted for at least one of a basic sequence index and a length of a zero correlation zone (ZCZ) to the specific UE. A preamble sequence is received from the specific UE over a random access channel. The preamble sequence is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences distinguishable by at least one of the basic sequence index and a length of a Cyclic Shift (CS) applied to the preamble sequence. The length of the CS applied to the preamble sequence is given by one among a plurality of application lengths determined based on the length of the ZCZ. A number of the plurality of lengths are differently given based on a type of the specific UE.
Abstract:
An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
Abstract:
An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
Provided are a method and apparatus for transmitting a reference signal in a multi-antenna system. A terminal generates a plurality of reference signal sequences to which cyclic shift values different from each other are allocated, generates an orthogonal frequency division multiplexing (OFDM) symbol to which the plurality of reference signal sequences are mapped, and transmits the OFDM symbol to a base station through a plurality of antennas. The respective cyclic shift values allocated to the respective reference signal sequences are determined on the basis of a parameter n indicated by a cyclic shift field transmitted from a physical downlink control channel (PDCCH).
Abstract:
A method for transmitting a random access preamble to a base station includes generating the random access preamble from a Zadoff-Chu (ZC) sequence having a length N, wherein the random access preamble is generated by considering a cyclic shift of the ZC sequence; and transmitting the random access preamble to the base station, wherein the cyclic shift is given by using a variable M corresponding to a Doppler shift of one subcarrier spacing, and wherein parameters associated with defining the cyclic shift are differently defined based on whether the variable M is less than ⅓ of the length N.