Abstract:
Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to applying the filament from the conduit nozzle.
Abstract:
A three-dimensional geometry is received, and sliced into layers. A first anisotropic fill tool path for controlling a three dimensional printer to deposit a substantially anisotropic fill material is generated defining at least part of an interior of a first layer. A second anisotropic fill tool path for controlling a three dimensional printer to deposit the substantially anisotropic fill material defines at least part of an interior of a second layer. A generated isotropic fill material tool path defines at least part of a perimeter and at least part of an interior of a third layer intervening between the first and second layers.
Abstract:
Systems, apparatus and methods of additively manufacturing objects are disclosed. Specifically, provided herein are methods of heating objects having a particle-based support at least partially surrounding the object during portions of stages of the heating. Additionally, systems, apparatus, and methods for removing the particle-based support during heating, such that the object can continue heating to form a final part. Systems, apparatus, and methods for distributing the particle-based support to shore the objects through heating are disclosed. Systems, apparatus, and methods for removing the particle-based support are also disclosed herein.
Abstract:
In in-process inspection or calibration of a print bed or 3D printed part with a 3D printer, toolpaths defining printing material shells for deposition by a 3D printer are compared to surface profile scans from a range scanner to identify differences between the print bed, instructed deposition and the measured result, permitting pausing or alteration of the toolpaths or printing process.
Abstract:
Techniques for manufacturing optimization using a multi-tenant machine learning platform are disclosed. A method for manufacturing optimization includes: obtaining physical sensor data, by a manufacturing device associated with a tenant of a multi-tenant machine learning platform; determining, by a machine learning spoke system associated with the tenant, a machine learning parameter based on at least the physical sensor data; preventing exposure of the first physical sensor data of the first manufacturing device to any other tenant of the multi-tenant machine learning platform; transmitting the machine learning parameter from the machine learning spoke system to a machine learning hub system of the multi-tenant machine learning platform; and updating, by the machine learning hub system, a multi-tenant machine learning model based at least on the machine learning parameter.
Abstract:
In in-process inspection or calibration of a print bed or 3D printed part with a 3D printer, toolpaths defining printing material shells for deposition by a 3D printer are compared to surface profile scans from a range scanner to identify differences between the print bed, instructed deposition and the measured result, permitting pausing or alteration of the toolpaths or printing process.
Abstract:
Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an extrusion nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to extruding the filament from the extrusion nozzle.
Abstract:
According to one aspect, embodiments of the invention provide a method of 3D printing, comprising depositing a model material in successive layers to form a part, the model material being a metal composite including greater than 50% by volume metal powder and less than 50% by volume a first removable binder, depositing the model material in successive layers to form a support structure adjacent the part, depositing a sinterable separation material between a surface of the part and a surface of the support structure, the sinterable separation material formed from 10-40% by volume ceramic powder and greater than 50% by volume a second removable binder, debinding the first removable binder of the model material and the second removable binder of the sinterable separation material, and sintering the part, the support structure, and the sinterable separation material at a temperature profile that sinters the model material and the sinterable separation material.
Abstract:
Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to drag the filament from the conduit nozzle.
Abstract:
According to one aspect, embodiments herein provide a 3-D printer comprising a composite filament supply, a build platen, a print head comprising a composite filament ironing tip and a heater, a plurality of actuators that move the print head and the build platen relative to one another in three degrees of freedom at a printing rate, at least one linear feed mechanism that advances the composite filament at a feed rate and drives the composite filament into the print head to deposit the composite filament, and a controller configured to operate the heater to heat the composite filament ironing tip to flow matrix material among axial fiber strands within the composite filament and operate the plurality of actuators to press the composite filament ironing tip against the composite filament and reshape the composite filament against one of the build platen and a composite filament previously deposited upon the build platen.