摘要:
An active loading-reduction device is provided for a circuit. The circuit has functional circuitry coupled to a terminal to receive an alternating voltage. The circuit also has an electrostatic discharge protector that is coupled to the terminal. The active loading-reduction device includes active circuitry that is adapted to be coupled to a power supply to provide a reactance to counteract a reactance provided by the electrostatic discharge protector at the terminal of the circuit.
摘要:
The present invention discloses a symmetric bidirectional silicon-controlled rectifier, which comprises: a substrate; a buried layer formed on the substrate; a first well, a middle region and a second well, which are sequentially formed on the buried layer side-by-side; a first semiconductor area and a second semiconductor area both formed inside the first well; a third semiconductor area formed in a junction between the first well and the middle region, wherein a first gate is formed over a region between the second and third semiconductor areas; a fourth semiconductor area and a fifth semiconductor area both formed inside the second well; a sixth semiconductor area formed in a junction between the second well and the middle region, wherein a second gate is formed over a region between the fifth and sixth semiconductor areas.
摘要:
An electrostatic discharge protection circuit that includes at least two transistors connected in a stacked configuration, a first diffusion region of a first dopant type shared by two adjacent transistors, and a second diffusion region of a second dopant type formed in the first diffusion region. A substrate-triggered site is induced into the device structure of the stacked transistors to improve ESD robustness and turn-on speed. An area-efficient layout to realize the stacked transistors is proposed. The stacked transistors may be implemented in ESD protection circuits with a mixed-voltage I/O interface, or in integrated circuits with multiple power supplies. The stacked transistors are fabricated without using a thick-gate mask.
摘要:
An electrostatic discharge (ESD) protection device and a layout thereof are provided. A bias conducting wire is mainly used to couple each base of a plurality of parasitic transistors inside ESD elements together, in order to simultaneously trigger all the parasitic transistors to bypass the ESD current, avoid the elements of a core circuit being damaged, and solve the non-uniform problem of bypassing the ESD current when ESD occurs. Furthermore, in the ESD protection layout, it only needs to add another doped region on a substrate neighboring to, but not contacting, doped regions of the ESD protection elements and use contacts to connect the added doped region, so as to couple each base of the parasitic transistors together without requiring for additional layout area.
摘要:
An electrostatic discharge protection device, an electrostatic discharge protection structure, and a manufacturing process of the device are provided. The electrostatic discharge protection device includes at least four doping regions, wherein two adjacent regions are of different types. The electrostatic discharge protection structure includes an electrostatic discharge bus, a plurality of first electrostatic discharge protection devices connecting to the gates of the display transistors and the electrostatic discharge bus, a plurality of second electrostatic discharge protection devices connecting to the source/drain of the transistors and the electrostatic discharge bus, and a plurality of third electrostatic discharge protection devices connecting to the input/output terminals of the drive circuit of the display and the electrostatic discharge bus.
摘要:
A circuit configured for providing hot-carrier effect protection, the circuit comprising a first transistor including a first terminal and a second terminal, the first terminal being coupled to a conductive pad, a switch device including a terminal coupled to the conductive pad, and a control circuit configured for keeping the switch at an off state during a receiving mode at which a signal of a first voltage level or a reference level is received at the conductive pad, keeping the switch at the off state during a transmitting mode from which a signal of a second voltage level or the reference level is transmitted at the conductive pad, and keeping the switch at an on state during a transition from the receiving mode when receiving a signal of the first voltage level to the transmitting mode when transmitting a signal having the reference voltage level, wherein during the transition a voltage across the first terminal and the second terminal of the first transistor is maintained at a level below approximately the first voltage level minus the second voltage level.
摘要:
An ESD protection circuit using a double-triggered silicon controller rectifier (SCR). The double-triggered silicon controller rectifier (SCR) includes N+ diffusion areas, P+ diffusion areas, a first N-well region, a second N-well region and a third N-well region formed in a P-substrate. The N+ diffusion areas and the P+ diffusion areas are isolated by shallow trench isolation (STI) structures. Two of the N+ diffusion areas are N-type trigger terminals. Two of the P+ diffusion areas are the P-type trigger terminal.
摘要翻译:使用双触发硅控制整流器(SCR)的ESD保护电路。 双触发硅控制整流器(SCR)包括N +扩散区域,P +扩散区域,形成在P衬底中的第一N阱区域,第二N阱区域和第三N阱区域。 通过浅沟槽隔离(STI)结构隔离N +扩散区域和P +扩散区域。 N +扩散区域中的两个是N型触发端子。 P +扩散区域中的两个是P型触发端子。
摘要:
A semiconductor device suitable for applications in an electrostatic discharge (ESD) protection circuit, including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, and a first doped region formed in the second well, wherein the first well, the second well, and the first doped region collectively form a parasitic bipolar junction transistor (BJT), and wherein the first well is the collector of the BJT, the second well is the base of the BJT, and the first doped region is the emitter of the BJT.
摘要:
A method of manufacturing a semiconductor device having a first and second transistor of an ESD protection and internal circuit respectively. The method includes the steps of providing a substrate, forming gates of the first and second transistor on the substrate, depositing a mask layer and patterning the mask layer using one single mask to remove the mask layer on the gates, a portion of a drain region of the first transistor, and a source and drain region of the second transistor, implementing ESD implantation under the regions without the patterned mask layer, removing the mask layer and forming sidewall spacers of the gates, and implementing drain diffusion.
摘要:
The invention relates to an ESD protection with ability to enhance trigger-on speed of a low voltage Triggered PNP (LVTPNP) unit for protecting internal circuits of an integrated circuit from attack of an ESD stress. The ESD protection unit incorporates either detection circuit or power clamp circuit to efficiently trigger on a trigger node as a heavily doped region of LVTPNP devices among an I/O pad, a VDD pin and a VSS pin. As soon as the trigger node of each LVTPNP device receives a trigger signal from either the ESD detection circuit or power clamp circuit, the threshold voltage of the LVTPNP devices are capable of being therefore reduced to enhance trigger-on speed of the LVTPNP devices that discharge ESD current.